Skip to main content

Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem

Abstract

Site occupancy provides a reasonable estimate of population status and trends, and it also provides an unbiased, cost-effective alternative method for large-scale, multispecies monitoring programs. In this study, we used camera-trapping data to determine carnivoran occupancy and associated environmental factors in Serra da Malcata Nature Reserve, Portugal. The study was intended as a precursor of further long-term multispecies monitoring programs. We estimated carnivoran species occupancy using a likelihood-based method, using the software PRESENCE. The major conclusions of the study were (1) fox occupancy tends to be independent of environmental factors; (2) stone marten occupancy is related with habitat variables, landscape structure, and preys; (3) common genet occupancy is related to broad leaf formations and preys; and (4) mongoose occupancy is higher in extensive areas of shrub habitats. Methodologically, we demonstrated the importance of modeling detection probabilities for species with low or variable detection rates. In the future, monitoring programs could benefit from incorporating estimates of detection probabilities into their design and analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141

    Article  Google Scholar 

  2. Bailey LL, Simons TR, Pollock KH (2004) Estimating site occupancy and detection probability parameters for terrestrial salamanders. Ecol Appl 14:692–702

    Article  Google Scholar 

  3. Barrientos R, Virgós E (2006) Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecol 30:107–116

    Article  Google Scholar 

  4. Beja P, Palma P, Pais M (2007) Rabbit Oryctolagus cuniculus habitats in Mediterranean scrubland: the role of scrub structure and composition. Wildlife Biol 13:28–37

    Article  Google Scholar 

  5. Benson JF, Chamberlain MJ (2007) Space use and habitat selection 451 by female Louisiana black bears in the Tensas river Basin of Louisiana. J Wildl Manage 71(1):117–126

    Article  Google Scholar 

  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  7. Calvete C (2006) Modeling the effect of population dynamics on the impact of rabbit hemorrhagic disease. Conserv Biol 20(4):1232–1241

    Article  PubMed  Google Scholar 

  8. Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). J Zool London 263:275–283

    Article  Google Scholar 

  9. Cavalini P, Lovari S (1991) Environmental factors influencing the use of habitat in the red fox, Vulpes vulpes. J Zool London 223:323–339

    Article  Google Scholar 

  10. Cavallini P, Santini S (1996) Reproduction of the red fox Vulpes vulpes in Central Italy. Ann Zool Fenn 33:267–274

    Google Scholar 

  11. Clevenger AP (1994) Feeding ecology of Eurasian pine martens and stone martens in Europe. In: Buskirk SW, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables and fishers: biology and conservation. Cornell University Press, New York, pp 326–340

    Google Scholar 

  12. Conroy M (1996) Abundance indices. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for mammals. Smithsonian Institution, Washington, pp 179–192

    Google Scholar 

  13. Cooch E, White G (2005) Program Mark: a gentle introduction. http://www.phidot.org/software/mark/docs/book

  14. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  15. Cruz J (2002) Genet (Genetta genetta): resource selection and spatial organization. Master Thesis. Biology Department. Coimbra University

  16. Cruz J, Sarmento P (1998) Some ecological aspects of the red fox at Serra da Malcata. Page 329 in Proceedings of the Euro-American Mammal Congress, Santiago de Compostela, Spain

  17. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Article  Google Scholar 

  18. Finley D, White G, Fitzgerald J (2005) Estimation of swift fox population size and occupancy rates in eastern Colorado. J Wildl Manage 69(3):861–873

    Article  Google Scholar 

  19. Genovesi P, Sinibaldi I, Boitani L (1996) Spacing patterns and territoriality of the stone marten. Can J Zool 75:1966–1971

    Article  Google Scholar 

  20. Gese EM (2001) Monitoring of terrestrial carnivore populations. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore conservation. University Press, Cambridge, pp 372–398

    Google Scholar 

  21. Gittleman J (1993) Carnivore life histories: a re-analysis in the light of new models. In: Dunstone N, Gorman ML (eds) Mammals as predators. Clarendon, Oxford, pp 65–84

    Google Scholar 

  22. Gommper ME, Hackett HM (2005) The long-term, range-wide decline of a once common carnivore: the eastern spotted skunk (Spilogale putorius). Anim Conserv 8(2):195–201

    Article  Google Scholar 

  23. Hicks NG, Menzel MA, Laherm J (1998) Bias in the determination of temporal activity patterns of syntopic Peromyscus in the Southern Appalachians. J Mammal 79:1016–1020

    Article  Google Scholar 

  24. Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862

    Article  Google Scholar 

  25. Kliskey AD, Byrom A, Norbury G (2000) Spatial prediction 497 of predation in the landscape: a GIS-based approach to predator-prey interactions for conservation management. 4th International Conference on Integrating GIS and Environmental Modelling (GIS/EM4): problems, prospects and research needs. Banff, Alberta, Canada, September 2–8, 2000

  26. Linkie MY, Dinata A, Nugroho A, Haidir IA (2007) Estimating occupancy of a data deficient mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra. Biol Conserv 137:20–27

    Article  Google Scholar 

  27. Liszka T (1984) An interpolation method for an irregular net of nodes. Int J Numer Meth Eng 20(9):1599–1612

    Article  Google Scholar 

  28. Long R (2006) Developing predictive occurrence models for carnivores in Vermont using data collected with multiple noninvasive methods. Ph.D. Dissertation, University of Vermont, Burlington

  29. Lucherini M, Lovari S, Crema G (1995) Habitat use and ranging behaviour of the red fox (Vulpes vulpes) in a Mediterranean rural area: is shelter availability a key factor? J Zool 237:577–591

    Article  Google Scholar 

  30. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Article  Google Scholar 

  31. MacKenzie DI, Bailey LL, Nichols JD (2004) Investigating species co-occurrence patterns when species are detected imperfectly. J Anim Ecol 73:546–555

    Article  Google Scholar 

  32. MacKenzie DI, Royle JA, Nichols JD, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. Academic, New York

    Google Scholar 

  33. Mangas JG, Lozano J, Cabezas-Díaz S, Virgós E (2008) The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers Conserv 17:43–51

    Article  Google Scholar 

  34. Manley P, Schlesinger M, Roth J, Van Horne B (2005) A fieldbased evaluation of a presence-absence protocol for monitoring ecoregional-scale biodiversity. J Wildl Manage 69(3):950–966

    Article  Google Scholar 

  35. O’Connell AF Jr, Talancy NW, Bailey LL, Sauer JR, Cook R, Gilbert AT (2006) Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J Wildl Manage 70(6):1626–1633

    Google Scholar 

  36. Otani T (2001) Seed dispersal by Japanese marten Martes melampus in the subalpine shrubland of northern Japan. Ecol Res 17:29–38

    Article  Google Scholar 

  37. Otis DL, Burnham KP, White CG, Anderson DR (1978) Statistical inference from capture data on closed animal’s populations. Wildlife Monogr 62

  38. Padial JM, Ávila E, Gil-Sánchez JM (2002) Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammal Biol 67:137–146

    Article  Google Scholar 

  39. Palomares F, Delibes M (1990) Habitat preference of large grey mongooses Herpestes ichneumon in Spain. Acta Theriol 35(1–2):1–6

    Google Scholar 

  40. Pandolfi M, De Marinis AM, Pretov I (1996) Fruit as a winter feeding resource in the diet of Stone marten (Martes foina) in east-central Italy. Z Säugetierk 61:215–220

    Google Scholar 

  41. Perkins MW, Conner LM (2004) Habitat use of fox squirrels in southwestern Georgia. J Wildl Manage 68:509–513

    Article  Google Scholar 

  42. Pimm SL, Hones JL, Diamond J (1988) On the risk of extinction. Am Nat 122:757–785

    Article  Google Scholar 

  43. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence counts. Ecology 84:777–790

    Article  Google Scholar 

  44. Sacchi O, Meriggi A (1995) Habitat requirements of the stone marten (Martes foina) on the Tyrrhenian slopes. Hystrix 7(1–2):99–104

    Google Scholar 

  45. Sarmento P, Cruz J, Eira C, Fonseca C (2009a) Evaluation of camera trapping for estimating red fox abundance. J Wildl Manage 73(7):1207–1212

    Article  Google Scholar 

  46. Sarmento P, Cruz J, Eira C, Fonseca C (2009b) Habitat selection and abundance of common genets Genetta genetta using camera capture-mark-recapture data. Eur J Wildlife Res 56(1):59–66

    Article  Google Scholar 

  47. Smith DM, Kelly JF, Finch DM (2007) Avian nest box selection and nest success in burned and unburned southwestern riparian forest. J Wildl Manage 71(2):411–421

    Article  Google Scholar 

  48. Swann D, Hass CC, Dalton D, Wolf S (2004) Infrared-triggered cameras for detecting wildlife: an evaluation and review. Wildl Soc Bull 32:357–365

    Article  Google Scholar 

  49. Torre I, Peris A, Tena L (2005) Estimating the relative abundance and temporal activity patterns of wood mice (Apodemus sylvaticus) by remote photography in Mediterranean post-fire habitats. Galemys 17:41–52

    Google Scholar 

  50. Virgós E, Lorente M, Cortés Y (1999) Geographical variation in Genet (Genetta genetta L.) diet: a literature review. Mamm Rev 29:117–126

    Article  Google Scholar 

  51. Virgós E, Telleria JL, Santos T (2002) A comparison on the response to forest fragmentation by medium-sized Iberian carnivores in central Spain. Biodiv Conserv 11:1063–1079

    Article  Google Scholar 

  52. Webbon C, Baker PJ, Harris S (2004) Faecal density counts for monitoring changes in red fox numbers in rural Britain. J Appl Ecol 41:768–779

    Article  Google Scholar 

  53. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

  54. Zapata SC, Travaini A, Delibes M (1997) Reproduction of the red fox, Vulpes vulpes, in Donana, southern Spain. Mammalia 61:628–631

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pedro Bernardo Sarmento.

Additional information

Communicated by H. Kierdorf

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarmento, P.B., Cruz, J., Eira, C. et al. Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem. Eur J Wildl Res 57, 119–131 (2011). https://doi.org/10.1007/s10344-010-0405-x

Download citation

Keywords

  • Camera trapping
  • Iberian carnivores
  • Occupancy rate
  • Software PRESENCE
  • Site occupancy