Advertisement

European Journal of Wildlife Research

, Volume 57, Issue 1, pp 119–131 | Cite as

Modeling the occupancy of sympatric carnivorans in a Mediterranean ecosystem

  • Pedro Bernardo SarmentoEmail author
  • Joana Cruz
  • Catarina Eira
  • Carlos Fonseca
Original Paper

Abstract

Site occupancy provides a reasonable estimate of population status and trends, and it also provides an unbiased, cost-effective alternative method for large-scale, multispecies monitoring programs. In this study, we used camera-trapping data to determine carnivoran occupancy and associated environmental factors in Serra da Malcata Nature Reserve, Portugal. The study was intended as a precursor of further long-term multispecies monitoring programs. We estimated carnivoran species occupancy using a likelihood-based method, using the software PRESENCE. The major conclusions of the study were (1) fox occupancy tends to be independent of environmental factors; (2) stone marten occupancy is related with habitat variables, landscape structure, and preys; (3) common genet occupancy is related to broad leaf formations and preys; and (4) mongoose occupancy is higher in extensive areas of shrub habitats. Methodologically, we demonstrated the importance of modeling detection probabilities for species with low or variable detection rates. In the future, monitoring programs could benefit from incorporating estimates of detection probabilities into their design and analysis.

Keywords

Camera trapping Iberian carnivores Occupancy rate Software PRESENCE Site occupancy 

References

  1. Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141CrossRefGoogle Scholar
  2. Bailey LL, Simons TR, Pollock KH (2004) Estimating site occupancy and detection probability parameters for terrestrial salamanders. Ecol Appl 14:692–702CrossRefGoogle Scholar
  3. Barrientos R, Virgós E (2006) Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecol 30:107–116CrossRefGoogle Scholar
  4. Beja P, Palma P, Pais M (2007) Rabbit Oryctolagus cuniculus habitats in Mediterranean scrubland: the role of scrub structure and composition. Wildlife Biol 13:28–37CrossRefGoogle Scholar
  5. Benson JF, Chamberlain MJ (2007) Space use and habitat selection 451 by female Louisiana black bears in the Tensas river Basin of Louisiana. J Wildl Manage 71(1):117–126CrossRefGoogle Scholar
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  7. Calvete C (2006) Modeling the effect of population dynamics on the impact of rabbit hemorrhagic disease. Conserv Biol 20(4):1232–1241CrossRefPubMedGoogle Scholar
  8. Carvalho JC, Gomes P (2004) Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). J Zool London 263:275–283CrossRefGoogle Scholar
  9. Cavalini P, Lovari S (1991) Environmental factors influencing the use of habitat in the red fox, Vulpes vulpes. J Zool London 223:323–339CrossRefGoogle Scholar
  10. Cavallini P, Santini S (1996) Reproduction of the red fox Vulpes vulpes in Central Italy. Ann Zool Fenn 33:267–274Google Scholar
  11. Clevenger AP (1994) Feeding ecology of Eurasian pine martens and stone martens in Europe. In: Buskirk SW, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables and fishers: biology and conservation. Cornell University Press, New York, pp 326–340Google Scholar
  12. Conroy M (1996) Abundance indices. In: Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS (eds) Measuring and monitoring biological diversity: standard methods for mammals. Smithsonian Institution, Washington, pp 179–192Google Scholar
  13. Cooch E, White G (2005) Program Mark: a gentle introduction. http://www.phidot.org/software/mark/docs/book
  14. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502CrossRefGoogle Scholar
  15. Cruz J (2002) Genet (Genetta genetta): resource selection and spatial organization. Master Thesis. Biology Department. Coimbra UniversityGoogle Scholar
  16. Cruz J, Sarmento P (1998) Some ecological aspects of the red fox at Serra da Malcata. Page 329 in Proceedings of the Euro-American Mammal Congress, Santiago de Compostela, SpainGoogle Scholar
  17. Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59CrossRefGoogle Scholar
  18. Finley D, White G, Fitzgerald J (2005) Estimation of swift fox population size and occupancy rates in eastern Colorado. J Wildl Manage 69(3):861–873CrossRefGoogle Scholar
  19. Genovesi P, Sinibaldi I, Boitani L (1996) Spacing patterns and territoriality of the stone marten. Can J Zool 75:1966–1971CrossRefGoogle Scholar
  20. Gese EM (2001) Monitoring of terrestrial carnivore populations. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore conservation. University Press, Cambridge, pp 372–398Google Scholar
  21. Gittleman J (1993) Carnivore life histories: a re-analysis in the light of new models. In: Dunstone N, Gorman ML (eds) Mammals as predators. Clarendon, Oxford, pp 65–84Google Scholar
  22. Gommper ME, Hackett HM (2005) The long-term, range-wide decline of a once common carnivore: the eastern spotted skunk (Spilogale putorius). Anim Conserv 8(2):195–201CrossRefGoogle Scholar
  23. Hicks NG, Menzel MA, Laherm J (1998) Bias in the determination of temporal activity patterns of syntopic Peromyscus in the Southern Appalachians. J Mammal 79:1016–1020CrossRefGoogle Scholar
  24. Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79:2852–2862CrossRefGoogle Scholar
  25. Kliskey AD, Byrom A, Norbury G (2000) Spatial prediction 497 of predation in the landscape: a GIS-based approach to predator-prey interactions for conservation management. 4th International Conference on Integrating GIS and Environmental Modelling (GIS/EM4): problems, prospects and research needs. Banff, Alberta, Canada, September 2–8, 2000Google Scholar
  26. Linkie MY, Dinata A, Nugroho A, Haidir IA (2007) Estimating occupancy of a data deficient mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra. Biol Conserv 137:20–27CrossRefGoogle Scholar
  27. Liszka T (1984) An interpolation method for an irregular net of nodes. Int J Numer Meth Eng 20(9):1599–1612CrossRefGoogle Scholar
  28. Long R (2006) Developing predictive occurrence models for carnivores in Vermont using data collected with multiple noninvasive methods. Ph.D. Dissertation, University of Vermont, BurlingtonGoogle Scholar
  29. Lucherini M, Lovari S, Crema G (1995) Habitat use and ranging behaviour of the red fox (Vulpes vulpes) in a Mediterranean rural area: is shelter availability a key factor? J Zool 237:577–591CrossRefGoogle Scholar
  30. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  31. MacKenzie DI, Bailey LL, Nichols JD (2004) Investigating species co-occurrence patterns when species are detected imperfectly. J Anim Ecol 73:546–555CrossRefGoogle Scholar
  32. MacKenzie DI, Royle JA, Nichols JD, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. Academic, New YorkGoogle Scholar
  33. Mangas JG, Lozano J, Cabezas-Díaz S, Virgós E (2008) The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers Conserv 17:43–51CrossRefGoogle Scholar
  34. Manley P, Schlesinger M, Roth J, Van Horne B (2005) A fieldbased evaluation of a presence-absence protocol for monitoring ecoregional-scale biodiversity. J Wildl Manage 69(3):950–966CrossRefGoogle Scholar
  35. O’Connell AF Jr, Talancy NW, Bailey LL, Sauer JR, Cook R, Gilbert AT (2006) Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. J Wildl Manage 70(6):1626–1633Google Scholar
  36. Otani T (2001) Seed dispersal by Japanese marten Martes melampus in the subalpine shrubland of northern Japan. Ecol Res 17:29–38CrossRefGoogle Scholar
  37. Otis DL, Burnham KP, White CG, Anderson DR (1978) Statistical inference from capture data on closed animal’s populations. Wildlife Monogr 62Google Scholar
  38. Padial JM, Ávila E, Gil-Sánchez JM (2002) Feeding habits and overlap among red fox (Vulpes vulpes) and stone marten (Martes foina) in two Mediterranean mountain habitats. Mammal Biol 67:137–146CrossRefGoogle Scholar
  39. Palomares F, Delibes M (1990) Habitat preference of large grey mongooses Herpestes ichneumon in Spain. Acta Theriol 35(1–2):1–6Google Scholar
  40. Pandolfi M, De Marinis AM, Pretov I (1996) Fruit as a winter feeding resource in the diet of Stone marten (Martes foina) in east-central Italy. Z Säugetierk 61:215–220Google Scholar
  41. Perkins MW, Conner LM (2004) Habitat use of fox squirrels in southwestern Georgia. J Wildl Manage 68:509–513CrossRefGoogle Scholar
  42. Pimm SL, Hones JL, Diamond J (1988) On the risk of extinction. Am Nat 122:757–785CrossRefGoogle Scholar
  43. Royle JA, Nichols JD (2003) Estimating abundance from repeated presence-absence counts. Ecology 84:777–790CrossRefGoogle Scholar
  44. Sacchi O, Meriggi A (1995) Habitat requirements of the stone marten (Martes foina) on the Tyrrhenian slopes. Hystrix 7(1–2):99–104Google Scholar
  45. Sarmento P, Cruz J, Eira C, Fonseca C (2009a) Evaluation of camera trapping for estimating red fox abundance. J Wildl Manage 73(7):1207–1212CrossRefGoogle Scholar
  46. Sarmento P, Cruz J, Eira C, Fonseca C (2009b) Habitat selection and abundance of common genets Genetta genetta using camera capture-mark-recapture data. Eur J Wildlife Res 56(1):59–66CrossRefGoogle Scholar
  47. Smith DM, Kelly JF, Finch DM (2007) Avian nest box selection and nest success in burned and unburned southwestern riparian forest. J Wildl Manage 71(2):411–421CrossRefGoogle Scholar
  48. Swann D, Hass CC, Dalton D, Wolf S (2004) Infrared-triggered cameras for detecting wildlife: an evaluation and review. Wildl Soc Bull 32:357–365CrossRefGoogle Scholar
  49. Torre I, Peris A, Tena L (2005) Estimating the relative abundance and temporal activity patterns of wood mice (Apodemus sylvaticus) by remote photography in Mediterranean post-fire habitats. Galemys 17:41–52Google Scholar
  50. Virgós E, Lorente M, Cortés Y (1999) Geographical variation in Genet (Genetta genetta L.) diet: a literature review. Mamm Rev 29:117–126CrossRefGoogle Scholar
  51. Virgós E, Telleria JL, Santos T (2002) A comparison on the response to forest fragmentation by medium-sized Iberian carnivores in central Spain. Biodiv Conserv 11:1063–1079CrossRefGoogle Scholar
  52. Webbon C, Baker PJ, Harris S (2004) Faecal density counts for monitoring changes in red fox numbers in rural Britain. J Appl Ecol 41:768–779CrossRefGoogle Scholar
  53. Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453CrossRefGoogle Scholar
  54. Zapata SC, Travaini A, Delibes M (1997) Reproduction of the red fox, Vulpes vulpes, in Donana, southern Spain. Mammalia 61:628–631Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Pedro Bernardo Sarmento
    • 1
    Email author
  • Joana Cruz
    • 2
  • Catarina Eira
    • 1
  • Carlos Fonseca
    • 1
  1. 1.CESAM & Departamento de Biologia da Universidade de AveiroCampus Universitário de SantiagoAveiroPortugal
  2. 2.Terra e Tudo, Consultoria e Gestão de Recursos Naturais, Unipessoal LdaQuinta da RebolosaAranhasPortugal

Personalised recommendations