Advertisement

Cladogenesis of the European brown hare (Lepus europaeus Pallas, 1778)

  • Joerns Fickel
  • Heidi C. Hauffe
  • Elena Pecchioli
  • Ramon Soriguer
  • Ljiljana Vapa
  • Christian Pitra
Original Paper

Abstract

A substantial portion of today’s biodiversity is attributed to the climatic oscillations of the Pleistocene Ice Ages. Gradual but dramatic climate changes were accompanied by expansion, contraction, and isolation of populations, promoting the accumulation of genome differences and adaptations in refugial populations and resulting in allopatric differentiation in a variety of taxa. In the present study, partial mitochondrial DNA sequences of the widely distributed European brown hare (Lepus europaeus) were analyzed to test whether the species’ present genetic structure is the result of postglacial re-colonization of Europe from Asia Minor (clade A) and the Balkans (clade B) only, as suggested previously, or if additional refugia are likely. Analyses indicated the presence of an additional refugium (Italy, clade I). The genealogic network of Italian hares displayed the tree-like structure expected from refugial populations, whereas central European brown hare haplotypes revealed a clear star-phylogeny indicative of past-bottleneck population growth. This population size expansion, which was confirmed by mismatch analysis, was estimated to have occurred ∼50–55 thousand years ago (kya). The divergence of clade A* from the remaining matrilines is estimated at 239 kya, whereas the divergence of the ancestors of clades B* and I from A* occurred about 128 kya.

Keywords

Biogeography Mitochondrial DNA Glacial refugia 

Abbreviations

HT

haplotype

CE

central Europe

I

Italy

ky

thousand years

kya

thousand years ago

A*

clade A with additional sequences

B*

clade B with additional sequences

Notes

Acknowledgments

We are very grateful to all people (especially hunters and forest wardens) who contributed to this study. T. Noventa and A. Schmidt offered expert technical assistance. U. Peschel, S. Blottner, M. Faßbender (all IZW), and M. Putze (Friedrich-Schiller University Jena) provided numerous hare samples, as did D. Faber (University Gießen, Germany), Z. Pielowski (Research Institute of the Polish Hunter’s Association Czempiń, Poland), J. Slamečka (Czech Academy of Landscape Ecology, Brno), and K. Schmidt (Mammal Research Institute of the Polish Academy of Sciences, Białowieza). Spanish hares were kindly provided by the Scientific Collection of the Doñana Biological Station (CSIC) and the CSIC-Navarra Foral Goverment project, Spain. Special thanks goes to Dr. N. Benecke (German Archeological Institute) for his help regarding the paleontology of L. europaeus. HCH and EP were funded by the Centro di Ecologia Alpina and the Research Fund of the Autonomous Province of Trento (Project Faunagen). We also thank the two anonymous reviewers for their suggestions and comments on a previous version of the manuscript. All experiments carried out in the course of this study complied with the existing law in Germany.

Supplementary material

10344_2008_175_MOESM1_ESM.pdf (134 kb)
Table S1 Lepus europaeus collection sites sorted by occurring haplotype (HT) (DOC 138 kb)
10344_2008_175_MOESM2_ESM.pdf (116 kb)
Table S2 109* haplotypes of 803 brown hares from Central Europe (CE, n = 770) and Italy (I, n = 33), defined on the basis of the mtDNA d-loop (335 bp) (DOC 118 kb)

References

  1. Adams J, Maslin M, Thomas E (1999) Sudden climate transitions during the Quarternary. Prog Phys Geogr 23:1–36Google Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  3. Alves PC, Ferrand N, Suchentrunk F, Harris DJ (2003) Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol Phyl Evol 27:70–80CrossRefGoogle Scholar
  4. Aksu AE, Hiscott RN, Yaşar D (1999) Oscillating Quarternary water levels of the Marmara Sea and vigorous outflow into the Aegean Sea from the Marmara Sea–Black Sea drainage corridor. Marine Geology 153:275–302CrossRefGoogle Scholar
  5. Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A (2002) Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA 99:8151–8156PubMedCrossRefGoogle Scholar
  6. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  7. Benecke N (1994) Archäozoologische Studien zur Entwicklung der Haustierhaltung in Mitteleuropa und Südskandinavien von den Anfängen bis zum ausgehenden Mittelalter. Schr Ur-FruÉhgesch 46:1–451Google Scholar
  8. Bennett KD, Tzedakis PC, Willis KJ (1991) Quarternary refugia of north European trees. J Biogeography 18:103–115CrossRefGoogle Scholar
  9. Bilton DT, Mirol PM, Mascheretti S, Fredga K, Zima J, Searle JB (1998) Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc Royal Soc B 265:1219–1226CrossRefGoogle Scholar
  10. Branco M, Monnerot M, Ferrand N, Templeton AR (2002) Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56:792–803PubMedGoogle Scholar
  11. Brewer S, Cheddadi R, de Beaulieu J-L, Reille M (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecol Manage 156:27–48CrossRefGoogle Scholar
  12. Brito PH (2005) The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe. Mol Ecol 14:3077–3094PubMedCrossRefGoogle Scholar
  13. Brunhoff C, Galbreath KE, Fedorov VB, Cook JA, Jaarola M (2003) Holarctic phylogeography of the root vole (Microtus oeconomus): implications for the late Quarternary biogeography of high latitudes. Mol Ecol 12:957–968PubMedCrossRefGoogle Scholar
  14. Clark PU, Mix AC (2002) Ice sheets and sea level of the Last Glacial Maximum. Quarternary Science Rev 21:1–7CrossRefGoogle Scholar
  15. Clement MD, Posada MD, Crandall KA (2000) Tcs: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  16. Cook JA, Bidlack AL, Conroy CJ, Demboski JR, Fleming MA, Runck AM, Stone KD, MacDonald SO (2001) A phylogeographic perspective on endemism in the Alexander Archipelago of southeast Alaska. Biol Conserv 97:215–227CrossRefGoogle Scholar
  17. Cooper SJ, Ibrahim KM, Hewitt GM (1995) Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol Ecol 4:49–60PubMedCrossRefGoogle Scholar
  18. Dietrich U (1984) Beitrag zum Status des europäischen Feldhasen (Lepus europaeus Pallas 1778) im südlichen Chile. Z Jagdwiss 30:256–259 (in German)CrossRefGoogle Scholar
  19. Dietrich U (1985) Populationsökologie des in Argentinien eingebürgerten europäischen Feldhasen (Lepus europaeus). Z Jagdwiss 31:92–102 (in German)CrossRefGoogle Scholar
  20. Djan M, Obreht D, Vapa L (2006) Polymorphism of mtDNA regions in brown hare (Lepus europaeus) populations from Vojvodina (Serbia and Montenegro). Eur J Wildl Res 52:288–291CrossRefGoogle Scholar
  21. Döhle H-J (1999) Die nacheiszeitliche Verbreitung einiger Wildsäugetiere (Carnivora, Leporidae) in Mittel-und Norddeutschland. Säugetierkundl Mitt 44:154–161 (in German)Google Scholar
  22. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120PubMedCrossRefGoogle Scholar
  23. Excoffier L, Schneider S (1999) Why hunter-gatherer populations do not show signs of Pleistocene demographic expansions. Proc Natl Acad Sci USA 96:10597–10602PubMedCrossRefGoogle Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  25. Fedorov VB, Stenseth NC (2001) Glacial survival of the Norwegian lemming (Lemmus lemmus) in Scandinavia: inference from mitochondrial DNA variation. Proc Royal Soc B 268:809–814CrossRefGoogle Scholar
  26. Fickel J, Lieckfeldt D, Pitra C (1999) Analyse der genetischen Diversität und Struktur in benachbarten Populationen des Feldhasen (Lepus europaeus Pallas, 1778). Z Jagdwiss 45:230–237 (in German)CrossRefGoogle Scholar
  27. Fickel J, Schmidt A, Putze M, Spittler H, Ludwig A, Streich WJ, Pitra C (2005) Genetic structure of populations of European brown hare: implications for management. J Wildlife Manage 69:760–771CrossRefGoogle Scholar
  28. Fickel J, Lieckfeldt D, Ratanakorn P, Pitra C (2007a) Distribution of haplotypes and microsatellite alleles among Asian elephants (Elephas maximus) in Thailand. Eur J Wildl Res 53:298–303CrossRefGoogle Scholar
  29. Fickel J, Wagener A, Ludwig A (2007b) Semen cryopreservation and the conservation of endangered species. Eur J Wildl Res 53:81–89CrossRefGoogle Scholar
  30. Fischer K, Heinrich WD (1983) Skelettreste von Lepus europaeus PALLAS, 1778 (Lagomorpha, Mammalia) aus dem fossilen Tierbautensystem von Pisede bei Malchin. Wiss Z Humboldt-Univ Berl, Math-natwiss Reihe 32:713–717 (in German)Google Scholar
  31. Forster P (2004) Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Phil Trans R Soc Lond B 359:255–264CrossRefGoogle Scholar
  32. Fraguglione D (1963) Introduction artificielle et tentatives d’acclimatisation du lièvre commun (Lepus europaeus Pallas 1778) (de par le monde). Royal Saint Hubert Club belgique, Belgium, pp 29–30 42–46 52–53 (in French)Google Scholar
  33. Fraguglione D (1971) Les problèmes posés par les entreprises de repeuplement avec le lièvre commun (Lepus europaeus Pallas 1778). Union Internationale des Biologistes du Gibier, Actes du Xe Congrès, France, pp 491–505 (in French)Google Scholar
  34. Frenzel B, Pécsi M, Velichko AA (1992) Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere. Late Pleistocene–Holocene. Geographical Research Institute, Hungarian Academy of Sciences. Gustav-Fischer Verlag, Budapest, Stuttgart, p 153Google Scholar
  35. Frölich K, Fickel J, Ludwig A, Lieckfeldt D, Streich WJ, Jurčík R, Slamecka J, Wibbelt G (2007) New variants of European brown hare syndrome virus (EBHSV) strains in free-ranging European brown hares (Lepus europaeus) from Slovakia. J Wildl Dis 43:89–96PubMedGoogle Scholar
  36. Ford MJ (2002) Applications of selective neutrality tests to molecular ecology. Mol Ecol 11:1245–1262PubMedCrossRefGoogle Scholar
  37. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  38. Gaiduk VE (1982) Some aspects of the ecology of closely related sympatric lagomorph species (Lagomorpha). Plenum Publishing Corporation (1983): pp. 401–405. Translated from Ékologiya 6:55–60 (1982)Google Scholar
  39. Gavrilets S, Li H, Vose MD (2000) Patterns of sparapatric speciation. Evolution 54:1126–1134PubMedGoogle Scholar
  40. Gibbard P, van Kolfschoten T (2004) The Pleistocene and Holocene Epochs. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale, Chapter 22. Cambridge University Press, Cambridge, UK, pp 441–452Google Scholar
  41. Giraudi C, Frezzotti M (1997) Late Pleistocene glacial events in the Central Apennines, Italy. Quarternary Research 48:280–290CrossRefGoogle Scholar
  42. Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol 17:1022–1031PubMedGoogle Scholar
  43. Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256CrossRefGoogle Scholar
  44. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137PubMedCrossRefGoogle Scholar
  45. Hasegawa M, Kishino K, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  46. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  47. Hewitt GM (1999) Postglacial re-colonization of European biota. Biol J Linn Soc 68:87–112Google Scholar
  48. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quarternary. Phil Trans R Soc Lond B 359:183–195CrossRefGoogle Scholar
  49. Kasapidis P, Suchentrunk F, Magoulas A, Kotoulas G (2005) The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of late Pleistocene climatic fluctuations and anthropogenic translocations. Mol Phyl Evol 34:55–66CrossRefGoogle Scholar
  50. Kimura M (1981) Estimation of the evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA 78:454–458PubMedCrossRefGoogle Scholar
  51. Kukla G (2000) The last interglacial. Science 287:987–989CrossRefGoogle Scholar
  52. Kumar S, Tamura K, Nei M (2004) Mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  53. Li WH (1977) Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85:331–337PubMedGoogle Scholar
  54. Lincoln GA (1974) Reproduction and March madness in the Brown hare, Lepus europaeus. J Zool Lond 174:1–14CrossRefGoogle Scholar
  55. Lister AM (1984) Evolutionary and ecological origins of British deer. Proc Royal Soc Edinburgh 82:205–229Google Scholar
  56. Lister AM (2004) The impact of Quarternary Ice Ages on mammalian evolution. Phil Trans R Soc Lond B 359:221–241CrossRefGoogle Scholar
  57. Lönnberg E (1905) On hybrids between Lepus timidus L. and Lepus europaeus Pallas from southern Sweden. Proc Zool Soc London 1:278–287Google Scholar
  58. Marboutin E, Peroux R (1995) Survival pattern of European hare in a decreasing population. J Appl Ecol 32:809–816CrossRefGoogle Scholar
  59. Meyer S, Weiss G, von Haeseler A (1999) Pattern of nucleotide and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110PubMedGoogle Scholar
  60. Musil R (1985) Die Fauna der Magdalénien-Siedlung Oelknitz. Weimarer Monographien zur Ur-und Frühgeschichte 17:1–43Google Scholar
  61. Nei M (1975) Molecular population genetics and evolution. North-Holland and American Elsevier, Amsterdam 288Google Scholar
  62. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York 512Google Scholar
  63. Pierpaoli M, Riga F, Trocchi V, Randi E (1999) Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol Ecol 8:1805–1817PubMedCrossRefGoogle Scholar
  64. Posada D (2003) Using Modeltest and Paup* to select a model of nucleotide substitution. In: Baxevanis AD, Davison DB, Page RDM, Petsko GA, Stein LD, Stormo G (eds) Current protocols in bioinformatics. Wiley, New York, pp 6.5.1–6.5.14Google Scholar
  65. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  66. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics Appl Note 14:817–818CrossRefGoogle Scholar
  67. Putze M, Nürnberg S, Fickel J (2007) Y-chromosomal markers for the European brown hare (Lepus europaeus, Pallas 1778). Eur J Wildl Res, 53:257–264CrossRefGoogle Scholar
  68. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86PubMedCrossRefGoogle Scholar
  69. Remington CL (1968) Suture-zones of hybrid interaction between recently joined biotas. Evol Biol 2:321–428Google Scholar
  70. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefGoogle Scholar
  71. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  72. Roy K, Valentine JW, Jablonski D, Kidwell SM (1996) Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. TREE 11:458–453Google Scholar
  73. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) Tree-Puzzle—maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics Appl Note 18:502–504CrossRefGoogle Scholar
  74. Schmidt HA, Strimmer K, von Haeseler A (2004) Tree-Puzzle—maximum likelihood analysis for nucleotide, amino acid and two state data. Available online http://www.tree-puzzle.de
  75. Schneider E (1978) Der Feldhase. BLV Verlagsgesellschaft München, 198 ppGoogle Scholar
  76. Schneider S, Excoffier L (1999) Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089PubMedGoogle Scholar
  77. Spittler H (1996) Der Hase in der Vergangenheit, Gegenwart und Zukunft. Diana-Verlag, Vettelschoß, Germany 265Google Scholar
  78. Steel M, Cooper A, Penny D (1996) Confidence intervals for the divergence time of two clades. Syst Biol 45:127–134CrossRefGoogle Scholar
  79. Stewart JR (2003) Comment on “Buffered tree population changes in a Quaternary refugium: evolutionary implications”. Science 299:825aCrossRefGoogle Scholar
  80. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. TREE 11:608–613Google Scholar
  81. Strimmer K, von Haeseler A (1997) Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94:6815–6819PubMedCrossRefGoogle Scholar
  82. Suchentrunk F, Michailov C, Markov G, Haiden A (2000) Population genetics of Bulgarian brown hares Lepus europaeus: allozymic diversity at zoogeographical crossroads. Acta Theriologica (Warszawa) 45:1–12Google Scholar
  83. Swofford DL (2002) Paup*. Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4.0 beta version. Sinauer Associates, Sunderland, Massachusetts, 144 pp (updates available at http://paup.csit.fsu.edu)
  84. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar
  85. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  86. Taylor KC, Mayewski PA, Alley RB, Brook EJ, Gow AJ, Grootes PM, Meese DA, Saltzman ES, Severinghaus JP, Twickler MS, White JWC, Whithlow S, Zielinski GA (1997) The Holocene–Younger Dryas transition recorded at Summit, Greenland. Science 278:825–827CrossRefGoogle Scholar
  87. Templeton AR (1998) Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397PubMedCrossRefGoogle Scholar
  88. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedGoogle Scholar
  89. Thulin GC, Jaarola M, Tegelström H (1997) The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol Ecol 6:463–467PubMedCrossRefGoogle Scholar
  90. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  91. Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2002) Buffered tree population changes in a Quarternary refugium: evolutionary implications. Science 297:2044–2047 (with technical comments in Vol. 299:825a–825b, 2003)PubMedCrossRefGoogle Scholar
  92. Tzedakis PC, Lawson IT, Frogley MR, Hewitt GM, Preece RC (2003) Reply to comment on “Buffered vegetation changes in a Quaternary refugium: evolutionary implications”. Science 299:825bCrossRefGoogle Scholar
  93. Wells RS, Yuldasheva N, Ruzibakiev R, Underhill PA, Evseeva I, Blue-Smith J, Jin L, Su B, Pitchappan R, Shanmugalakshmi S, Balakrishnan K, Read M, Pearson NM, Zerjal T, Webster MT, Zholoshvili I, Jamarjashvili E, Gambarov S, Nikbin B, Dostiev A, Aknazarov O, Zalloua P, Tsoy I, Kitaev M, Mirrakhimov M, Chariev A, Bodmer WF (2001) The Eurasian Heartland: a continental perspective on Y-chromosome diversity. Proc Natl Acad Sci USA 98:10244–10249PubMedCrossRefGoogle Scholar
  94. Willis KJ, Whittaker RJ (2000) The refugial debate. Science 287:1406–1407PubMedCrossRefGoogle Scholar
  95. Wilson AC, Cann RL, Carr SM, George M Jr, Gyllensten UB, Helm-Bychowski K, Higuchi RC, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400CrossRefGoogle Scholar
  96. Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314PubMedCrossRefGoogle Scholar
  97. Yang Z, Yoder AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48:274–283PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Joerns Fickel
    • 1
  • Heidi C. Hauffe
    • 2
  • Elena Pecchioli
    • 2
  • Ramon Soriguer
    • 3
  • Ljiljana Vapa
    • 4
  • Christian Pitra
    • 1
  1. 1.Department of Evolutionary GeneticsLeibniz-Institute for Zoo and Wildlife ResearchBerlinGermany
  2. 2.Centro di Ecologia AlpinaBondoneItaly
  3. 3.Especies Cinegeticas y PlagaEstacion Biologica de Donaña C.S.I.C.SevilleSpain
  4. 4.Department of GeneticsTrg Dositeja Obradovica 2Novi SadSerbia

Personalised recommendations