European Journal of Wildlife Research

, Volume 53, Issue 1, pp 61–67 | Cite as

Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression

  • F. E. ZachosEmail author
  • C. Althoff
  • Y. v. Steynitz
  • I. Eckert
  • G. B. Hartl
Original Paper


In the present study, we analysed 18 red deer specimens from a small (N = 50) and isolated population in Schleswig-Holstein, northern Germany, with respect to variability at nine polymorphic microsatellite loci and 439 bp of the mitochondrial DNA control region. Several cases of brachygnathy (shortened lower jaw), commonly associated with inbreeding depression, have been recorded in the population. Genetic variability was very low compared with other European red deer populations including the neighbouring population from which the population under study was derived some 130 years ago. The effective population size was estimated to be seven individuals corresponding to an increase in inbreeding (or a loss of heterozygosity) of 7% each generation. This value is seven times higher than the theoretical threshold level up to which natural selection is believed to counteract the fixation of deleterious alleles in the gene pool. As a consequence, the population urgently needs genetic input from other populations to overcome the negative effects of random drift and inbreeding. To our knowledge, this study is one of the first to genetically analyse a red deer population showing strong signs of inbreeding depression.


Effective population size Habitat fragmentation Brachygnathy Mitochondrial control region Microsatellites 



The authors would like to thank H. A. Hewicker for providing the samples, the photograph and invaluable information about the Hasselbusch population.


  1. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  2. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA, Solinas Toldo S, Fries R, Grosz MD, Yoo J, Beattie CW (1994) A genetic linkage map for cattle. Genetics 136:619–639PubMedGoogle Scholar
  3. Brown M (1987) Congenital and other anomalies: defects of long bones. In: Alexander TL (ed) Management and diseases of deer. Veterinary Deer Society, London, pp 114–116Google Scholar
  4. Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim Genet 24:145PubMedCrossRefGoogle Scholar
  5. Butcher DR (1984) Obstetrics and neonatal diseases of deer. In: Refresher Course for Veterinarians. Proceeding No. 72. Deer Refresher Course. Camden, University of Sydney, AustraliaGoogle Scholar
  6. Chapman DI, Chapman NG (1970) Preliminary observations on the reproductive cycle of male fallow deer (Dama dama). J Reprod Fertil 21:1–8PubMedCrossRefGoogle Scholar
  7. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecolog Syst 18:237–268CrossRefGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  9. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270PubMedCrossRefGoogle Scholar
  10. Ede AJ, Pierson CA, Crawford AM (1995) Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim Genet 26:129–130PubMedCrossRefGoogle Scholar
  11. Ewen KR, Bahlo M, Treloar SA, Levinson DF, Mowry B, Barlow JW, Foote SJ (2000) Identification and analysis of error types in high-throughput genotyping. Am J Hum Genet 67:727–736PubMedCrossRefGoogle Scholar
  12. Feulner PGD, Bielfeldt W, Zachos FE, Bradvarovic J, Eckert I, Hartl GB (2004) Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Heredity 93:299–306PubMedCrossRefGoogle Scholar
  13. Frankham R (2000) Genetics and conservation: commentary on Elgar and Clode. Aust Biol 13:45–54Google Scholar
  14. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  15. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UKGoogle Scholar
  16. Franklin JR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology. An evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149Google Scholar
  17. Gage MJG, Surridge AK, Tomkins JL, Green E, Wiskin L, Bell DJ, Hewitt GM (2006) Reduced heterozygosity depresses sperm quality in wild rabbits, Oryctolagus cuniculus. Curr Biol 16:612–617PubMedCrossRefGoogle Scholar
  18. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-Statistics. J Hered 86:485–486Google Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Hartl GB, Pucek Z (1994) Genetic depletion in the European Bison (Bison bonasus) and the significance of electrophoretic heterozygosity for conservation. Conserv Biol 8:167–174CrossRefGoogle Scholar
  21. Hartl GB, Vodnansky M, Suchentrunk F, Steinbeck T, Willing R, Tataruch F, Oberwalder U (1991) Fortpflanzungsstörungen in einer Feldhasenzucht - Folge einer Inzuchtdepression? Verhandlungsberichte Erkrankungen Zootiere 33:17–26Google Scholar
  22. Hartl GB, Klein F, Willing R, Apollonio M, Lang G (1995) Allozymes and the genetics of antler development in red deer (Cervus elaphus). J Zool 237:83–100CrossRefGoogle Scholar
  23. Hartl GB, Zachos F, Nadlinger K (2003) Genetic diversity in European red deer (Cervus elaphus L.): anthropogenic influences on natural populations. C R Biol 326:S37–S42PubMedCrossRefGoogle Scholar
  24. Hartl GB, Zachos FE, Nadlinger K, Ratkiewicz M, Klein F, Lang G (2005) Allozyme and mitochondrial DNA analysis of French red deer (Cervus elaphus) populations: genetic structure and its implications for management and conservation. Mamm Biol 70:24–34CrossRefGoogle Scholar
  25. Hmwe SS (2005) Population genetics and phylogeography of European red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Ph.D. thesis, Christian-Albrechts-University, Kiel, GermanyGoogle Scholar
  26. Hmwe SS, Zachos FE, Eckert I, Lorenzini R, Fico R, Hartl GB (2006a) Conservation genetics of the endangered red deer from Sardinia and Mesola with further remarks on the phylogeography of Cervus elaphus corsicanus. Biol J Linn Soc 88:691–701CrossRefGoogle Scholar
  27. Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB (2006b) Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool (in press). DOI 10.1111/j.1469-7998.2006.00123.x
  28. Jessen H (1988) Wild und Jagd in Schleswig-Holstein. Verlag Heinrich Möller Söhne, RendsburgGoogle Scholar
  29. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  30. Kuehn R, Schroeder W, Pirchner F, Rottmann O (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166CrossRefGoogle Scholar
  31. Lauc T, Rudan P, Rudan I, Campbell H (2003) Effect of inbreeding and endogamy on occlusal traits in human isolates. J Orthod 30:301–308PubMedCrossRefGoogle Scholar
  32. Lorenzini R, Lovari S (2006) Genetic diversity and phylogeography of the European roe deer: the refuge area theory revisited. Biol J Linn Soc 88:85–100CrossRefGoogle Scholar
  33. Lorenzini R, Fico R, Mattioli S (2005) Mitochondrial DNA evidence for a genetic distinction of the native red deer of Mesola, northern Italy, from the Alpine populations and the Sardinian subspecies. Mamm Biol 70:187–198CrossRefGoogle Scholar
  34. Lorenzini R, Mattioli S, Fico R (1998) Allozyme variation in native red deer Cervus elaphus of Mesola Wood, northern Italy: implications for conservation. Acta Theriol Suppl 5:63–74Google Scholar
  35. Martinez JG, Carranza J, Fernandez-Garcia JL, Sanchez-Prieto CB (2002) Genetic variation of red deer populations under hunting exploitation in southwestern Spain. J Wildlife Manage 66:1273–1282CrossRefGoogle Scholar
  36. Mattioli S, Fico R, Lorenzini R, Nobili G (2003) Mesola red deer: physical characteristics, population dynamics and conservation perspectives. Hystrix It J Mamm (ns) 14:87–94Google Scholar
  37. Meißner M, Reinecke H, Wölfel H (2005) Wildökologische Begleitstudie zum Bau der A 20/Nord-West-Umfahrung Hamburg im Abschnitt Elbe bis A 21. Analyse der Habitatfragmentierung für bodenlebende Säugetiere am Beispiel der Leitart Rothirsch und Maßnahmen zur Verminderung der Zerschneidungswirkung. Im Auftrag des Ministeriums für Wirtschaft, Arbeit und Verkehr des Landes Schleswig-HolsteinGoogle Scholar
  38. Nies G, Zachos FE, Hartl GB (2005) The impact of female philopatry on population differentiation in the European roe deer (Capreolus capreolus) as revealed by mitochondrial DNA and allozymes. Mamm Biol 70:130–134CrossRefGoogle Scholar
  39. Nussey DH, Coltman DW, Coulson T, Kruuk LEB, Donald A, Morris SJ, Clutton-Brock TH, Pemberton J (2005) Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol 14:3395–3405PubMedCrossRefGoogle Scholar
  40. O’Brien SJ, Martenson JS, Miththapala S, Janczewski D, Pecon-Slattery J, Johnson W, Gilbert DA, Roelke M, Packer C, Bush M, Wildt DE (1996) Conservation genetics of the Felidae. In: Avise JC, Hamrick JL (eds) Conservation genetics. Case histories from nature. Chapman & Hall, New York, pp 50–74Google Scholar
  41. Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615PubMedCrossRefGoogle Scholar
  42. Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252PubMedGoogle Scholar
  43. Peters S (2000) Verbreitung der Schalenwildarten in Schleswig-Holstein. Thesis, Fachhochschule Eberswalde, GermanyGoogle Scholar
  44. Pitra C, Lutz W (2005) Population genetic structure and the effect of founder events on the genetic variability of introduced sika deer, Cervus nippon, in Germany and Austria. Eur J Wildl Res 51:95–100CrossRefGoogle Scholar
  45. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193CrossRefGoogle Scholar
  46. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  47. Renecker LA, Blake JE (1993) Congenital defects in reindeer: a production issue. Circular 87:
  48. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  49. Røed KH, Midthjell L (1998) Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1776PubMedGoogle Scholar
  50. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175PubMedCrossRefGoogle Scholar
  51. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  52. Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662CrossRefGoogle Scholar
  53. Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265PubMedCrossRefGoogle Scholar
  54. Smits B, Bubenik GA (1990) Congenital osteopetrosis in white-tailed deer (Odocoileus virginianus). J Wildl Dis 26:567–571PubMedGoogle Scholar
  55. Soulé ME (1980) Threshold for survival. Maintaining fitness and evolutionary potential. In: Soulé ME, Wilcox BA (eds) Conservation biology. An evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 151–169Google Scholar
  56. Vaiman D, Osta R, Mercier D, Grohs C, Leveziel H (1992) Characterization of five new bovine dinucleotide repeats. Anim Genet 23:537–541PubMedCrossRefGoogle Scholar
  57. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER (version 2.2.3): software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  58. Wattier R, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573CrossRefGoogle Scholar
  59. Wilson GA, Strobeck C, Wu L, Coffin JW (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699PubMedCrossRefGoogle Scholar
  60. Zachos F, Hartl GB, Apollonio M, Reutershan T (2003) On the phylogeographic origin of the Corsican red deer (Cervus elaphus corsicanus): evidence from microsatellites and mitochondrial DNA. Mamm Biol 68:284–298CrossRefGoogle Scholar
  61. Zachos FE, Hmwe SS, Hartl GB (2006) Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla: Cervidae) populations from northern Germany. J Zool Syst Evol Res 44:167–174CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • F. E. Zachos
    • 1
    Email author
  • C. Althoff
    • 1
  • Y. v. Steynitz
    • 1
  • I. Eckert
    • 1
  • G. B. Hartl
    • 1
  1. 1.Zoological InstituteChristian-Albrechts-UniversityKielGermany

Personalised recommendations