Advertisement

Growth Inhibition, Residual Contact and Translaminar Toxicity of Annona-based Bioinsecticides on Tomato Leafminer: Laboratory and Greenhouse Assessments

  • Elaine Ferrari de Brito
  • Edson Luiz Lopes Baldin
  • Gabriel Luiz Padoan Gonçalves
  • Leila Gimenes
  • João Batista Fernandes
  • Leandro do Prado RibeiroEmail author
Original Article
  • 9 Downloads

Abstract

This study aimed to evaluate the bioactivity of ethanolic extracts from different parts of some Annona species (A. montana, A. muricata and A. sylvatica) against T. absoluta. In the initial screening, the ethanolic extracts from leaves and seeds of A. muricata promoted pronounced lethality and growth inhibition of T. absoluta larvae by means of residual contact and translaminar action. However, these extracts did not affect its biology, oviposition in choice and no-choice tests, as well as egg viability. Afterwards, the crude ethanolic extracts of leaves and seeds from A. muricata were submitted to liquid-liquid partitioning, and their respective fractions were evaluated against T. absoluta larvae. These procedures disclosed the hydroalcoholic fraction from A. muricata seeds and both the ethyl acetate and dichloromethane fractions from its leaves as the most active against T. absoluta larvae. Then, proton nuclear magnetic resonance (1H NMR) experiments were performed aiming to identify the main constituents present in these fractions. The chemical analyses of each NMR spectrum revealed that A. muricata bioactive fractions presented acetogenins as major compounds. Moreover, a formulated ethanolic extract from A. muricata seeds presented similar bioactivity against T. absoluta larvae in both laboratory and greenhouse bioassays when compared with two commercial botanical insecticides (AnosomTM 1 EC and Azaamax 1.2 EC). Therefore, the seeds from A. muricata, discarded during the process of its fruit pulp extraction, are a potential source of bioactive acetogenins to formulate botanical insecticides to control populations of T. absoluta in tomato crops, mainly in organic production systems.

Keywords

Solanum lycopersicum Tuta absoluta Botanical insecticide Annona spp. Acetogenins 

Wirkungen von Annona-basierten Bioinsektiziden auf die Tomatenminiermotte: Analysen in Labor und Gewächshaus

Zusammenfassung

Diese Studie zielte darauf ab, die Bioaktivität von ethanolischen Extrakten aus verschiedenen Teilen einiger Annona-Arten (A. montana, A. muricata und A. sylvatica) gegen T. absoluta zu bewerten. Im ersten Screening führten die ethanolischen Extrakte aus Blättern und Samen von A. muricata zu einer ausgeprägten Letalität und Wachstumshemmung der T. absoluta-Larven durch Kontakt mit Rückständen und die translaminare Wirkung. Diese Extrakte hatten jedoch keinen Einfluss auf die Biologie, die Eiablage bei Choice- und No-Choice-Tests sowie die Lebensfähigkeit der Eier. Anschließend wurden die ethanolischen Extrakte aus Blättern und Samen von A. muricata einer Flüssig-Flüssig-Extraktion unterzogen und ihre jeweiligen Fraktionen gegen T. absoluta-Larven getestet. Diese Verfahren ergaben, dass die hydroalkoholische Fraktion aus A. muricata-Samen und sowohl die Ethylacetat- als auch die Dichlormethanfraktion aus den Blättern am aktivsten gegen T. absoluta-Larven sind. Dann wurden Protonen-Kernspinresonanz-(1H‑NMR)-Experimente durchgeführt, um die Hauptbestandteile zu identifizieren, die in diesen Fraktionen vorhanden sind. Die chemische Analyse jedes NMR-Spektrums ergab, dass bioaktive Fraktionen von A. muricata Acetogenine als Hauptverbindungen enthielten. Darüber hinaus zeigte der ethanolische Extrakt aus A. muricata-Samen eine ähnliche Bioaktivität gegen T. absoluta-Larven in Labor- und Gewächshaus-Bioassays wie zwei kommerziellen botanischen Insektizide (AnosomTM 1 EC und Azaamax 1.2 EC). Daher sind die Samen von A. muricata, die während des Prozesses der Fruchtfleischgewinnung entsorgt werden, eine potenzielle Quelle bioaktiver Acetogenine und damit zur Entwicklung botanischer Insektizide zur Kontrolle der Populationen von T. absoluta in Tomatenkulturen, hauptsächlich in ökologischen Produktionssystemen, geeignet.

Schlüsselwörter

Solanum lycopersicum Tuta absoluta Botanisches Insektizid Annona spp. Acetogenine 

Notes

Acknowledgements

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for a doctoral scholarship granted to the first author and to the National Council for Scientific and Technological Development (CNPq) for the productivity in research fellowship granted to the second and fifth authors.

Conflict of interest

E. Ferrari de Brito, E.L. Lopes Baldin, G.L. Padoan Gonçalves, L. Gimenes, J. Batista Fernandes and L. do Prado Ribeiro declare that they have no competing interests.

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266CrossRefGoogle Scholar
  2. Akhtar Y, Isman MB (2004) Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J Appl Entomol 128:32–38CrossRefGoogle Scholar
  3. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ali A, Ahmad F, Biondi A, Wang YS, Desneux N (2012) Potential for using Datura alba leaf extracts against two major stored grain pests, the khapra beetle Trogoderma granarium and the rice weevil Sitophillus oryzae. J Pest Sci 85:359–366CrossRefGoogle Scholar
  5. Ansante TF, Ribeiro LP, Bicalho KU, Fernandes JB, das Graças Fernandes da Silva MF, Vieira PC, Vendramim JD (2015) Secondary metabolites from Neotropical Annonaceae: screening, bioguided fractionation, and toxicity to Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Ind Crop Prod 74:969–976CrossRefGoogle Scholar
  6. Araujo ACP, Nogueira DP, Augusto LGS (2000) Pesticide impact on health: a study of tomato cultivation. Rev Saude Publica 34:309–313PubMedCrossRefGoogle Scholar
  7. Berenbaum MR (1983) Effects of tannins on growth and digestion in 2 species of Papilionidae. Entomol Exp Appl 34:245–250CrossRefGoogle Scholar
  8. Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D (2005) Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep 22:426–426CrossRefGoogle Scholar
  9. Bowers MD (1983) The role of iridoid glycosides in host-plant specificity of checkerspot butterflies. J Chem Ecol 9:475–493PubMedCrossRefGoogle Scholar
  10. Chapman RF (2003) Contact chemoreception infeeding by phytophagous insects. Annu Rev Entomol 48:455–484PubMedCrossRefGoogle Scholar
  11. Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, Abbott JR, Mols JB, Maas JW, Saunders RMK, Chase MW (2012) A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot J Linnean Soc 169:5–40CrossRefGoogle Scholar
  12. Civelek HS, Weintraub PG (2003) Effects of bensultap on larval serpentine leafminers, Liriomyza tirfolii (Burgess) (Diptera: Agromyzidae), in tomatoes. Crop Prot 22:479–483CrossRefGoogle Scholar
  13. Coelho Júnior A, Deschamps FC (2014) Systemic and translaminar action of neem oil for the control of Tuta absoluta (Meyrick) (Lep.: Gelechiidae) in tomato. Arq Instit Biológico 81:140–144CrossRefGoogle Scholar
  14. Cunha US, Vendramim JD, Rocha WC, Vieira PC (2006) Fractions of Trichilia pallens with insecticidal activity against Tuta absoluta. Pesq Agropecu Bras 41:1579–1585CrossRefGoogle Scholar
  15. da Cunha US, Vendramim JD, Rocha WC, Vieira PC (2008) Bioactivity of Trichilia pallida Swartz (Meliaceae) derived molecules on Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 37:709–715PubMedCrossRefGoogle Scholar
  16. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  17. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vazquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncel C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  18. Di Toto Blessing L, Alvarez Colom O, Popich S, Neske A, Bardon A (2010) Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. J Pest Sci 83:307–310CrossRefGoogle Scholar
  19. Esposti MD, Ghelli A, Ratta M, Cortes D, Estornell E (1994) Natural substances (acetogenins) from the family Annonaceae are powerfull inhibitors of mitochondrial NADH dehydrongenase (complex-1). Biochem J 301:161–167PubMedPubMedCentralCrossRefGoogle Scholar
  20. FAO (2017) Crops (Production). Food and Agriculture Organization. Available at: http://www.fao.org/faostat/en/#home. Accessed: 23 May 2019
  21. FNP (2016) Agrianual 2016 - Anuário da Agricultura Brasileira, 21st edn. Informa Economics FNP—Consultoria e Comércio, São PauloGoogle Scholar
  22. Gallardo T, Zafra-Polo MC, Tormo JR, Gonzalez MC, Franck X, Estornell E, Cortes D (2000) Semisynthesis of antitumoral acetogenins: SAR of functionalized alkyl-chain bis-tetrahydrofuranic acetogenins, specific inhibitors of mitochondrial complex I. J Med Chem 43:4793–4800PubMedCrossRefGoogle Scholar
  23. Gharekhani GH, Salek-Ebrahimi H (2014) Evaluating the damage of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) on some cultivars of tomato under greenhouse condition. Arch Phytopathol Plant Prot 47:429–436CrossRefGoogle Scholar
  24. Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25CrossRefGoogle Scholar
  25. Gonçalves GLP, Domingues VD, Ribeiro LD, Fernandes JB, Fernandes MDD, Forim MR, Vendramim JD (2017) Compounds from Duguetia lanceolata St.-Hil. (Annonaceae) bioactive against Zabrotes subfasciatus (Boheman) (Coleoptera: Chrysomelidae: Bruchinae). Ind Crop Prod 97:360–367CrossRefGoogle Scholar
  26. Grzybowski A, Tiboni M, Silva MAN, Chitolina RF, Passos M, Fontana JD (2013) Synergistic larvicidal effect and morphological alterations induced by ethanolic extracts of Annona muricata and Piper nigrum against the dengue fever vector Aedes aegypti. Pest Manag Sci 69:589–601PubMedCrossRefGoogle Scholar
  27. Gu ZM, Zhou D, Wu J (1997) Screening for annonaceous acetogenins in bioactive plant extracts by liquid chromatography/mass spectrometry. J Nat Prod 60:242–248PubMedCrossRefGoogle Scholar
  28. Guadano A, Gutierrez C, de la Pena E, Cortes D, Gonzalez-Coloma A (2000) Insecticidal and mutagenic evaluation of two annonaceous acetogenins. J Nat Prod 63:773–776PubMedCrossRefGoogle Scholar
  29. Gunstone F (2019) NMR spectroscopy of fatty acids and their derivatives. AOCS Lipid Library. http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=40256. Accessed: 11 March 2019.
  30. Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, Gorman K, Rapisarda C, Williamson MS, Bass C (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:506–513PubMedCrossRefGoogle Scholar
  31. Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A, Esenali UT, Jalilov A, Ali A, Shashank PR, Ismoilov K, Lu Z, Wang S, Zhang G, Wan F, Biondi A, Desneux N (2018) Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J Pest Sci 1:11Google Scholar
  32. Hinde J, Demetrio CGB (1998) Overdispersion: models and estimation. Comput Stat Data Anal 27:151–170CrossRefGoogle Scholar
  33. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590PubMedCrossRefGoogle Scholar
  34. Isman MB, Seffrin R (2014) Natural insecticides from the Annonaceae: a unique example for developing biopesticides. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi, pp 21–33CrossRefGoogle Scholar
  35. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235PubMedCrossRefGoogle Scholar
  36. Krinski D, Massaroli A, Machado M (2014) Insecticidal potencial of the Annonaceae family plants. Rev Bras Frutic 36:225–242CrossRefGoogle Scholar
  37. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119CrossRefGoogle Scholar
  38. Lima LAR, Pimenta LPS, Boaventura MAD (2010) Acetogenins from Annona cornifolia and their antioxidant capacity. Food Chem 122:1129–1138CrossRefGoogle Scholar
  39. Londershausen M, Leicht W, Lieb F, Moeschler H, Weiss H (1991) Molecular-mode of action of annonins. Pestic Sci 33:427–438CrossRefGoogle Scholar
  40. van Loon JJA, Schoonhoven LM (1999) Specialist deterrent chemoreceptors enable Pieris caterpillars to discriminate between chemically different deterrents. Entomol Exp Appl 91:29–35CrossRefGoogle Scholar
  41. Marchioro CA, Krechemer FS, Foerster LA (2017) Estimating the development rate of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), using linear and non-linear models. Pest Manag Sci 73:1486–1493PubMedCrossRefGoogle Scholar
  42. McIntyre GA (1971) Probit analysis-Finney DJ. Austral J Stat 13:179–180Google Scholar
  43. McLaughlin JL, Zeng L, Oberlies NH, Alfonso D, Johnson HA, Cummings BA (1997) Annonaceous acetogenins as new natural pesticides: Recent progress. Phytochem Pest Control 658:117–133CrossRefGoogle Scholar
  44. Nelder JA, Wedderburn RW (1972) Generalized linear models. J Royal Stat Soc A 135:370–377CrossRefGoogle Scholar
  45. Nelson N, Bernays E (1998) Inositol in two host plants of Manduca sexta. Entomol Exp Appl 88:189–193CrossRefGoogle Scholar
  46. de Oliveira JL, Ramos Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561CrossRefGoogle Scholar
  47. Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci 52:229–241CrossRefGoogle Scholar
  48. Pentzold S, Burse A, Boland W (2017) Contact chemosensation of phytochemicals by insect herbivores. Nat Prod Rep 34:478–483PubMedPubMedCentralCrossRefGoogle Scholar
  49. Pettit GR, Cragg GM, Polonski J, Herald DL, Goswami A, Smith CR, Moretti C, Schmidt JM, Weisleder D (1987) Isolation and structure of rolliniastatin-1 from the South American tree Rollinia mucosa. Can J Chem 65:1433–1435CrossRefGoogle Scholar
  50. Pinto de Lemos EE (2014) The production of Annona fruits in Brazil. Rev Bras Frutic 36:77–85CrossRefGoogle Scholar
  51. Rampelotti-Ferreira FT, Vendramim JD, Forim MR (2012) Bioactivity of neem nanoformulations on tomato pinworm. Cien Rural 42:1347–1353CrossRefGoogle Scholar
  52. Ribeiro LP, Vendramim JD, Bicalho KU, Andrade MS, Fernandes JB, Moral RA, Demétrio CGB (2013) Annona mucosa Jacq. (Annonaceae): A promising source of bioactive compounds against Sitophilus zeamais Mots. (Coleoptera: Curculionidae). J Stored Prod Res 55:6–14CrossRefGoogle Scholar
  53. Ribeiro LP, Vendramim JD, Gonçalves GLP, Ansante TF, Gloria EM, Lopes JC, Mello-Silva R, Fernandes JB (2016a) Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae. BLACPMA 15:141–158Google Scholar
  54. Ribeiro LP, Ansante TF, Vendramim JD (2016b) Efeito do extrato etanólico de sementes de Annona mucosa no desenvolvimento e comportamento alimentar de Spodoptera frugiperda. Bragantia 75(3):322–330CrossRefGoogle Scholar
  55. Ribeiro LP, Zanardi OZ, Vendramim JD, Yamamoto PT (2014) Comparative toxicity of an acetogenin-based extract and commercial pesticides against citrus red mite. Exp Appl Acarol 64:87–98CrossRefGoogle Scholar
  56. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R, Gravouil M, Bassi A (2015) First report of Tuta absoluta resistance to diamide insecticides. J Pest Sci 88:9–16CrossRefGoogle Scholar
  57. Saini P, Gopal M, Kumar R, Gogoi R, Srivastava C (2015) Bioefficacy evaluation and dissipation pattern of nanoformulation versus commercial formulation of pyridalyl in tomato (Solanum lycopersicum). Environ Monit Assess.  https://doi.org/10.1007/s10661-015-4767-0 CrossRefPubMedGoogle Scholar
  58. Salinero C, Feás X, Mansilla JP, Seijas JA, Vázquez-Tato P, Vela P, Sainz MJ (2012) H-Nuclear magnetic resonance analysis of the triacylglyceride composition of cold-pressed oil from Camellia japonica. Molecules 17:6716–6727PubMedPubMedCentralCrossRefGoogle Scholar
  59. Schoonhoven LM, van Loon JJA (2002) An inventory of taste in caterpillars: each species its own key. Acta Zool Acad Sci Hung 48:215–263Google Scholar
  60. Silva GA, Picanco MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67:913–920PubMedCrossRefGoogle Scholar
  61. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  62. Souza CM, Baldin EL, Ribeiro LP, Silva IF, Morando R, Bicalho KU, Fernandes JB (2016) Lethal and growth inhibitory activities of Neotropical Annonaceae—derived extracts, commercial formulation, and an isolated acetogenin against Helicoverpa armigera. J Pest Sci 90(2):701–709CrossRefGoogle Scholar
  63. Souza CM, Baldin EL, Ribeiro LP, Santos TLB, Silva IF, Morando R, Vendramim JD (2019) Antifeedant and growth inhibitory effects of Annonaceae derivatives on Helicoverpa armigera (Hübner). Crop Prot.  https://doi.org/10.1016/j.cropro.2019.03.008 CrossRefGoogle Scholar
  64. de Souza Tavares W, Akhtar Y, Gonçalves GLP, Zanuncio JC, Isman MB (2016) Turmeric powder and its derivatives from Curcuma longa rhizomes: insecticidal effects on cabbage looper and the role of synergists. Sci Rep.  https://doi.org/10.1038/srep34093 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sparks TC, Nauen R (2015) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128PubMedCrossRefGoogle Scholar
  66. Steinbrecht RA (1997) Pore structures in insect olfactory sensilla: a review of data and concepts. Int J Insect Morphol Embryol 26:229–245CrossRefGoogle Scholar
  67. Stowell M (2004) Flowering plants of the neotropics. Libr J 129:74Google Scholar
  68. Sylla S, Brevault T, Bal AB, Chailleux A, Diatte M, Desneux N, Diarra K (2017) Rapid spread of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), an invasive pest in Sub-Saharan Africa. Entomol Gen 36:269–283CrossRefGoogle Scholar
  69. Weintraub PG, Horowitz AR (1998) Effects of translaminar versus conventional insecticides on Liriomyza huidobrensis (Diptera: Agromyzidae) and Diglyphus isaea (Hymenoptera: Eulophidae) populations in celery. J Econ Entomol 91:1180–1185CrossRefGoogle Scholar
  70. Werdin Gonzalez J, Gutierrez MM, Ferrero A, Fernandez B (2014) Essential oils nanoformulations for stored-product pest control—characterization and biological properties. Chemosphere 100:130–138PubMedCrossRefGoogle Scholar
  71. Werdin Gonzalez J, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Fernandez B (2016) Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the German cockroach. Ecotoxicol Environ Saf 130:11–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Elaine Ferrari de Brito
    • 1
  • Edson Luiz Lopes Baldin
    • 1
  • Gabriel Luiz Padoan Gonçalves
    • 2
  • Leila Gimenes
    • 3
  • João Batista Fernandes
    • 3
  • Leandro do Prado Ribeiro
    • 4
    Email author
  1. 1.Department of Crop Protection, School of AgricultureSão Paulo State UniversityBotucatuBrazil
  2. 2.Department of Entomology and Acarology, “Luiz de Queiroz” College of AgricultureUniversity of São Paulo (ESALQ/USP)PiracicabaBrazil
  3. 3.Natural Products Laboratory, Department of ChemistryFederal University of São Carlos (UFSCar)São CarlosBrazil
  4. 4.Research Center for Family AgricultureAgricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI)ChapecóBrazil

Personalised recommendations