Advertisement

Effects of Arbuscular Mycorrhizal Fungi and Rhizobia Symbiosis on the Tolerance of Medicago Sativa to Salt Stress

  • R. Ben LaouaneEmail author
  • A. MeddichEmail author
  • N. Bechtaoui
  • K. Oufdou
  • S. Wahbi
Original Article
  • 23 Downloads

Abstract

Alfalfa is the most forage crop cultivated in Mediteranean area where salinity is one of the main limiting factors for its production. Thus, a consortium of arbuscular mycorrhizal fungi (AM) isolated from the Aoufous palmeraie, Morocco, and autochthonous rhizobia strain (RhLO1) or their combination (AM + RhLO1) were tested for their efficiency to improve alfalfa tolerance to salinity. The grass waste compost was given as a source of organic matter to the soil. Antioxidant status, physiological parameters and growth of alfalfa were evaluated. The results showed that the highest alfalfa growth was reached in plants dually inoculated particularly under non-stress conditions. Dual inoculation also enhanced the stomatal conductance in control plants, while the nodule number and mycorrhizal infection were enhanced under both conditions. Salt stress did not affect the efficiency of photosystem II. However, single or dual inoculation increased this efficiency. RhLO1 or AM + RhLO1 symbiosis could alleviate the deleterious effects of salinity on alfalfa. They could maintain higher leaf water potential (LWP Ψ), reducing the electrolyte leakages and malondialdehyde (MDA) content, inducing the accumulation of compatible osmolytes (sugar) and antioxidant enzymes as defense strategy. Thus, these autochthonous microorganisms were effective for alfalfa plants to alleviate salinity damage and improve plant growth and productivity.

Keywords

Arbuscular mycorrhiza Rhizobia Symbiosis Salt stress Medicago sativa 

Auswirkungen der Symbiose mit arbuskulären Mykorrhizapilzen und Rhizobien auf die Toleranz von Medicago sativa gegenüber Salzstress

Zusammenfassung

Alfalfa ist die meistverwendete Futterpflanze im Mittelmeerraum, wo der Salzgehalt einer der wichtigsten limitierenden Faktoren für seine Produktion ist. In dieser Studie wurden arbuskuläre Mykorrhizapilze (AM), die aus dem Stamm Aoufous palmeraie, Marokko, isoliert wurden, und autochthone Rhizobien (RhLO1) oder deren Kombination (AM + RhLO1) auf ihre Effizienz getestet, die Salztoleranz von Alfalfa zu verbessern. Der Grasabfallkompost wurde als Quelle für organische Stoffe in den Boden eingebracht. Der antioxidative Status, die physiologischen Parameter und das Wachstum von Alfalfa wurden untersucht. Die Ergebnisse zeigten, dass das größte Alfalfa-Wachstum bei Pflanzen erreicht wurde, die insbesondere unter stressfreien Bedingungen doppelt beimpft wurden. Die doppelte Beimpfung erhöhte auch die stomatäre Leitfähigkeit in Kontrollpflanzen, während die Knöllchenzahl und die Mykorrhiza-Infektion unter beiden Bedingungen erhöht wurden. Der Salzstress hatte keinen Einfluss auf die Effizienz des Photosystems II. Die ein- oder zweifache Beimpfung erhöhte jedoch die Effizienz. Die RhLO1- oder AM + RhLO1-Symbiose könnte die schädlichen Auswirkungen des Salzstresses auf Alfalfa lindern. Sie könnten ein höheres Blattwasserpotenzial aufrechterhalten (LWP Ψ), die Elektrolytverluste und den Gehalt an Malondialdehyd (MDA) reduzieren und die Ansammlung geeigneter Osmolyten (Zucker) und antioxidativer Enzyme als Abwehrstrategie induzieren. Somit waren diese autochthonen Mikroorganismen für Alfalfa-Pflanzen wirksam, um Salzschäden zu lindern und das Pflanzenwachstum und die Produktivität zu verbessern.

Schlüsselwörter

Arbuskuläre Mykorrhiza Rhizobien Symbiose Salzstress Medicago sativa 

Notes

Acknowledgements

The authors are thankful to Dr. Thouria Bourhim, Faculty of Sciences Semlalia, Cadi Ayyad University, for her critical reading, valuable suggestions and corrections during writing this article.

Funding

This work was funded by the Ministère marocain de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres, Morocco.

Conflict of interest

R. Ben Laouane, A. Meddich, N. Bechtaoui, K. Oufdou and S. Wahbi declare that they have no competing interests.

References

  1. Abd-Alla MH, El-Enany A‑WE, Nafady NA et al (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58.  https://doi.org/10.1016/j.micres.2013.07.007 CrossRefGoogle Scholar
  2. Arnon D (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15CrossRefGoogle Scholar
  3. Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190.  https://doi.org/10.1007/s11099-013-0021-6 CrossRefGoogle Scholar
  4. Ashraf M, Shahbaz M, Ali Q (2013) Drought-induced modulation in growth and mineral nutrients in Canola ( brassica Napus L .). Pak J Bot 45:93–98Google Scholar
  5. Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp. 201–237CrossRefGoogle Scholar
  6. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413.  https://doi.org/10.1007/s00374-008-0344-9 CrossRefGoogle Scholar
  7. Bertrand A, Dhont C, Bipfubusa M et al (2015) Improving salt stress responses of the symbiosis in alfalfa using salt-tolerant cultivar and rhizobial strain. Appl Soil Ecol 87:108–117.  https://doi.org/10.1016/j.apsoil.2014.11.008 CrossRefGoogle Scholar
  8. Beyer W, Fridovich I (1987) Assaying for Superoxide Dismutase activity : Some large consequences of minor changes in conditions. Anal Biochem 566:559–566CrossRefGoogle Scholar
  9. Biró B, Köves-Péchy K, Vörös I et al (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15:159–168.  https://doi.org/10.1016/S0929-1393(00)00092-5 CrossRefGoogle Scholar
  10. Blaylock MJ, James BR (1994) Redox transformation and plant uptake of Se resulting from root-soil interactions. Plant Soil 158:1–17CrossRefGoogle Scholar
  11. Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. Bmc Microbiol 10.  https://doi.org/10.1186/1471-2180-10-15 Google Scholar
  12. Farissi M, Bouizgaren A, Faghire M et al (2011) Agro-physiological responses of Moroccan alfalfa ( Medicago sativa L .) populations to salt stress during germination and early seedling stages. Seed Sci Technol 39:389–401CrossRefGoogle Scholar
  13. Farissi M, Bouizgaren A, Faghire M et al (2013) Agrophysiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Turk J Botany 37:1166–1175.  https://doi.org/10.3906/bot-1211-16 CrossRefGoogle Scholar
  14. Flajoulot S, Ronfort J, Baudouin P et al (2005) Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor Appl Genet 111:1420–1429.  https://doi.org/10.1007/s00122-005-0074-4 CrossRefGoogle Scholar
  15. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36.  https://doi.org/10.1111/j.1469-8137.2007.02191.x CrossRefGoogle Scholar
  16. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300.  https://doi.org/10.1128/MMBR.68.2.280-300.2004 CrossRefGoogle Scholar
  17. Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. Arbuscular mycorrhizas: Physiology and function. Springer, Dordrecht, pp 239–262CrossRefGoogle Scholar
  18. Gupta B, Huang B (2014) Mechanism of salinity tolerance in Plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596.  https://doi.org/10.1155/2014/701596 Google Scholar
  19. Hasegawa PM, Bressan RA (2000) Plant cellular andmolecular responses tohigh salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  20. He ZQ, He CX, Zhang Z Bin, et al (2007) Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids Surf B Biointerfaces 59:128–133.  https://doi.org/10.1016/j.colsurfb.2007.04.023 CrossRefGoogle Scholar
  21. Hori K, Wada A, Shibuta T (1997) Changes in Phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura fusiformis ( Homoptera: Eriosomatidae). Appl Entomol Zool (Jpn) 32(2):365–371.  https://doi.org/10.1248/cpb.37.3229 CrossRefGoogle Scholar
  22. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379.  https://doi.org/10.1007/s00572-006-0046-9 CrossRefGoogle Scholar
  23. Lutts S, Kinet JM, Bouharmont J (1996) Nacl-induced senescence in leaves of rice (Oryza sativa L.) Cultivars differing in salinity resistance. Ann Bot 78:389–398.  https://doi.org/10.1006/anbo.1996.0134 CrossRefGoogle Scholar
  24. Madhava Rao KV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128.  https://doi.org/10.1016/S0168-9452(00)00273-9 CrossRefGoogle Scholar
  25. Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124CrossRefGoogle Scholar
  26. Meddich A, Jaiti F, Bourzik W et al (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474.  https://doi.org/10.1016/j.scienta.2015.06.024 CrossRefGoogle Scholar
  27. Meddich A, Oihabi A, Abbas Y, Bizid E (2000) Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie 20:283–295.  https://doi.org/10.1051/agro:2000127 CrossRefGoogle Scholar
  28. Mortimer PE, Pérez-Fernández MA, Valentine AJ (2012) Arbuscular mycorrhiza maintains nodule function during external NH 4+supply in Phaseolus vulgaris (L.). Mycorrhiza 22:237–245.  https://doi.org/10.1007/s00572-011-0396-9 CrossRefGoogle Scholar
  29. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250.  https://doi.org/10.1046/j.0016-8025.2001.00808.x CrossRefGoogle Scholar
  30. Nawaz K, Hussain K, Majeed A et al (2010) Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475–5480.  https://doi.org/10.5897/AJB10.100 Google Scholar
  31. Noctor G, Foyer CH (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279.  https://doi.org/10.1146/annurev.arplant.49.1.249 CrossRefGoogle Scholar
  32. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158.  https://doi.org/10.1016/S0007-1536(70)80110-3 CrossRefGoogle Scholar
  33. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32(1):181–200.  https://doi.org/10.1007/s13593-011-0029-x CrossRefGoogle Scholar
  34. Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143.  https://doi.org/10.1046/j.1469-8137.2003.00658.x CrossRefGoogle Scholar
  35. Smith JHC, Benitez A (1955) Chlorophylls: Analysis in plant materials. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol 4. Springer, Berlin, Heidelberg, pp 142–196  https://doi.org/10.1007/978-3-642-64961-5_6. ISBN 978-3-642-64963-9CrossRefGoogle Scholar
  36. Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathway (s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431CrossRefGoogle Scholar
  37. Tejera García NA, Olivera M, Iribarne C, Lluch C (2004) Partial purification and characterization of a non-specific acid phosphatase in leaves and root nodules of Phaseolus vulgaris. Plant Physiol Biochem 42:585–591.  https://doi.org/10.1016/j.plaphy.2004.04.004 CrossRefGoogle Scholar
  38. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  39. Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere 27:177–192.  https://doi.org/10.1016/S1002-0160(17)60309-6 CrossRefGoogle Scholar
  40. Vivas A, Marulanda A, Ruiz-Lozano JM et al (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256.  https://doi.org/10.1007/s00572-003-0223-z CrossRefGoogle Scholar
  41. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1–14.  https://doi.org/10.1007/s00425-003-1105-5 CrossRefGoogle Scholar
  42. Wu Q‑S, Xia R‑X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425.  https://doi.org/10.1016/j.jplph.2005.04.024 CrossRefGoogle Scholar
  43. Xu L, Yan D, Ren X, et al (2016) Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Ind Crops Prod 94:574–585.  https://doi.org/10.1016/j.indcrop.2016.09.023 CrossRefGoogle Scholar
  44. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci 10(12):1360–1385.  https://doi.org/10.1016/j.tplants.2005.10.002 CrossRefGoogle Scholar
  45. Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: Nutrient uptake and ion distribution within root tissues. Mycorrhiza 24:383–395.  https://doi.org/10.1007/s00572-013-0546-3 CrossRefGoogle Scholar
  46. Zhang SA, Hu JA, Zhang YA et al (2007) Seed priming with brassinolide improves lucerne ( Medicago sativa L .) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58(8):811–815.  https://doi.org/10.1071/ar06253 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Biotechnology and Plant Physiology, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco
  2. 2.Laboratory of Biology and Biotechnology of Microorganisms, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco

Personalised recommendations