Advertisement

Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress

  • Oudou Issa AliEmail author
  • Rachid Fghire
  • Fatima Anaya
  • Ouafae Benlhabib
  • Said Wahbi
Original Article
  • 33 Downloads

Abstract

The objective of this study was to investigate the drought-related adaptation strategies of two quinoa (Chenopodium quinoa Willd.) cultivars grown under controlled conditions. After 34 days of growth, water was withheld until plants were severely wilted, then they were re-watered and left to recover. 20 days later the experiment was reproduced. We analyzed growth, biomass, stomatal density, leaf water status, chlorophyll and malonyldialdehyde (MDA) content. Results showed that under water stress growth, biomass, stomatal density and leaf water status were significantly affected. On the other hand, results showed that water stress in the initial period can significantly increase the tolerance to drought during later phases. The data showed that quinoa drought tolerance may result from its capacity to maintain cell health status. Our findings provide new tracks into the mechanisms of drought tolerance in quinoa plants.

Keywords

Drought tolerance Quinoa Soil drought Stress recovery Water stress 

Physiologische und morphologische Reaktionen zweier Quinoa-Sorten (Chenopodium quinoa Willd.) auf Trockenstress

Zusammenfassung

Das Ziel dieser Studie war es, die durch Trockenheit bedingten Anpassungsstrategien zweier Quinoa-Sorten (Chenopodium quinoa Willd.) zu untersuchen, die unter kontrollierten Bedingungen angebaut werden. Nach 34 Wachstumstagen wurde Wasser zurückgehalten, bis die Pflanzen stark verwelkt waren, dann wurden sie wieder bewässert und konnten sich erholen. 20 Tage später wurde das Experiment reproduziert. Wir analysierten Wachstum, Biomasse, Stomatadichte, Blattwasserstatus, Chlorophyll- und Malonyldialdehydgehalt (MDA). Die Ergebnisse zeigten, dass unter Wasserstress das Wachstum, die Biomasse, die Stomatadichte und der Blattwasserstatus signifikant beeinflusst wurden. Auf der anderen Seite zeigten die Ergebnisse, dass Wasserstress in der Anfangsphase die Toleranz gegenüber Trockenheit in späteren Phasen signifikant erhöhen kann. Die Daten zeigten zudem, dass die Trockentoleranz von Quinoa aus der Fähigkeit resultieren kann, den Gesundheitszustand der Zellen zu erhalten. Unsere Ergebnisse liefern neue Erkenntnisse über die Mechanismen der Trockentoleranz in Quinoa-Pflanzen.

Schlüsselwörter

Trockentoleranz Quinoa Bodentrockenheit Stresserholung Wasserstress 

Notes

Conflict of interest

O. Issa Ali, R. Fghire, F. Anaya, O. Benlhabib and S. Wahbi declare that they have no competing interests.

References

  1. Achten WMJ, Maes WH, Reubens B, Mathij SE, Singh VP, Verchot L, Muys B (2010) Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenergy 34:667–676CrossRefGoogle Scholar
  2. Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE (2012) Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357:117–129CrossRefGoogle Scholar
  3. Aganchich B, Tahi H, Wahbi S, Modaffar C, Serraj R (2007) Growth, water relations and antioxidant defence mechanisms of olive (Olea europaea L.) subjected to Partial Root Drying (PRD) and Regulated Deficit Irrigation (RDI). Plant Biosyst 141:252–264CrossRefGoogle Scholar
  4. Aganchich B, Wahbi S, Loreto F, Centritto M (2009) Partial root zone drying: Regulation of photosynthetic limitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. Tree Physiol 29:685–696CrossRefGoogle Scholar
  5. Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefGoogle Scholar
  6. Artemios MB, George K (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379CrossRefGoogle Scholar
  7. Ashraf A, Aranda X, Savé R, Felicidad H, Biel C (2013) Evaluation of the response of maximum daily shrinkage in young cherry trees submitted to water stress cycles in a greenhouse. Agric Water Manag 118:150–158CrossRefGoogle Scholar
  8. Benlhabib O (2005) Les cultures alternatives: Quinoa, amarante et épeautre. Transf Technol Agric 133:1–4Google Scholar
  9. Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited enviroments. Exp Agric 43:411–435CrossRefGoogle Scholar
  10. Ehlert C, Maurel C, Tardieu F, Simonneau T (2009) Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell Turgor and leaf elongation even without changing transpiration. Plant Physiol 150:1093–1104CrossRefGoogle Scholar
  11. Fghire R (2014) Effet du déficit hydrique sur le comportement écophysiologique et agronomique du quinoa (Chenopodium quinoa). Université Cadi Ayyad, Marrekech (PhD Thesis)Google Scholar
  12. Fghire R, Anaya F, Oudou IA, Benlhabib O, Ragab R, Wahbi S (2015) Physiological and photosynthetic response of quinoa to drought stress. Chil J Agric 75:174–183CrossRefGoogle Scholar
  13. Fghire R, Oudou IA, Anaya F, Benlhabib O, Jacobsen SE, Wahbi S (2013) Protective Antioxidant enzyme activities are affected by drought in quinoa (Chenopodium quinoa Willd.). J Biol Agric Healthc 3:62–68Google Scholar
  14. Fu GF, Song J, Li YR, Yue MK, Xiong J, Tao LX (2010) Alterations of panicle antioxidant metabolism and carbohydrate content and pistil water potential involved in spikelet sterility in rice under water-deficit stress. Rice Sci 17:303–310CrossRefGoogle Scholar
  15. Ge T, Sui F, Bai L, Lu Y, Zhou G (2006) Effects of water stress on the protective enzyme activities and lipid Peroxidation in roots and leaves of summer maize. Agric Sci China 5:291–298CrossRefGoogle Scholar
  16. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. Synthesis report. IPCC, Geneva  https://doi.org/10.1017/CBO9780511546013 (Contribution of Working Groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change)CrossRefGoogle Scholar
  17. Jacobsen SE (1997) Adaptation of quinoa (Chenopodium quinoa) to northern European agriculture. Studies on developmental pattern. Euphytica 96:41–48CrossRefGoogle Scholar
  18. Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287CrossRefGoogle Scholar
  19. Jacobsen SE, Monteros C, Corcuera LJ, Bravo LA, Christiansen JL, Mujica A (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475CrossRefGoogle Scholar
  20. Jensen CR, Jacobsen SE, Andersen MN, Nunez N, Andersen SD, Rasmussen L, Mogensen VO (2000) Leaf gaSExchange and water relation characteristics of field quinoa ( Chenopodium quinoa Willd.) during soil drying. Eur J Agron 13:11–25CrossRefGoogle Scholar
  21. Khaleghi E, Arzani K, Moallemi N, Barzegar M (2012) Evalution of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad Sci Eng Technol 68:1154–1157Google Scholar
  22. Liu F, Stu H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. Eur J Agron 16:137–150CrossRefGoogle Scholar
  23. Miranda-apodaca J, Yoldi-achalandabaso A, Aguirresarobe A (2018) Similarities and differences between the responses to osmotic and ionic stress in quinoa from a water use perspective. Agric Water Manag 203:344–352CrossRefGoogle Scholar
  24. Mujica A, Jacobsen SE, Izquierdo J, Marathée JP (2001) Quinua (Chenopodium quinoa Willd.): Ancestral cultivo andino, alimento del presente y futuro. In: Izquierdo Fernández JI et al (ed) Cultivos Andinos. FAO, Santiago (CD-ROM)Google Scholar
  25. Ogaya R, Llorens L, Peñuelas J (2011) Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime. Acta Oecologica 37:381–385CrossRefGoogle Scholar
  26. Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought—mechanisms of tolerance. Funct Plant Biol 42:136–148CrossRefGoogle Scholar
  27. Riccardi M, Mele G, Pulvento C, Lavini A, Andria R, Jacobsen SE (2014) Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosyn Res 120:263–272CrossRefGoogle Scholar
  28. Ruiz KB, Biondi S, Martínez EA, Orsini F, Antognoni F, Jacobsen SE (2016) Quinoa—a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst 150:357–371CrossRefGoogle Scholar
  29. Sapeta H, Miguel C, Lourenço T, Marocod J, Lindee P, Oliveira M (2013) Drought stress response in Jatropha curcas: Growth and physiology. Environ Exp Bot 85:76–84CrossRefGoogle Scholar
  30. Shabala L, Mackay A, Tian Y, Jacobsen SE, Zhou DW, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146:26–38CrossRefGoogle Scholar
  31. Steele MR, Gitelson AA, Rundquist DC (2008) A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron J 100:779–782CrossRefGoogle Scholar
  32. Sun Y, Liu F, Bendevis M, Shabala S, Jacobsen SE (2014) Sensitivity of two Quinoa ( Chenopodium quinoa Willd.) varieties to progressive drought stress. J Agron Crop Sci 200:12–23CrossRefGoogle Scholar
  33. Tahi H, Wahbi S, Wakrim R, Aganchich B, Serraj R, Centritto M (2007) Water relations, photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation. Plant Biosyst 141:265–274CrossRefGoogle Scholar
  34. Turner NC, Begg JE (1981) Plant-water relations and adaptation to stress. Plant Soil 58:97–131CrossRefGoogle Scholar
  35. Wahbi S, Wakrim R, Aganchich B, Tahi H, Serraj R (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate I. Physiological and agronomic responses. Agric Ecosyst Environ 106:289–301CrossRefGoogle Scholar
  36. Yang L, Han M, Zhou G, Li J (2007) The changes in water-use efficiency and stoma density of Leymus chinensis along northeast China transect. Acta Ecol Sinica 27:16–24CrossRefGoogle Scholar
  37. Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Oudou Issa Ali
    • 1
    Email author
  • Rachid Fghire
    • 1
  • Fatima Anaya
    • 1
  • Ouafae Benlhabib
    • 2
  • Said Wahbi
    • 1
  1. 1.Laboratory of Biotechnology and Plant Physiology, Faculty of science SemlaliaCadi Ayyad UniversityMarrakeshMorocco
  2. 2.Department of Plant Production, Protection and BiotechnologiesAgronomic and Veterinary Institute Hassan IIRabatMorocco

Personalised recommendations