Advertisement

Microsegregation in Maize Cropping—a Chance to Improve Farmland Biodiversity

  • Christoph von Redwitz
  • Michael GlemnitzEmail author
  • Jörg Hoffmann
  • Ruth Brose
  • Gernot Verch
  • Dietmar Barkusky
  • Christoph Saure
  • Gert Berger
  • Sonoko Bellingrath-Kimura
Original Article
  • 39 Downloads

Abstract

The need to preserve and enhance biodiversity in agricultural landscapes is widely accepted. In the case of maize, there is a chance to combine production and biodiversity in the same field by microsegregation: wildflowers are sown between the future maize rows after harvest of the last main crop. These wildflower strips provide flowers and vegetation structure within fields and favour biodiversity without losing production area. The system is based on reliable cropping techniques such as strip-till, underground fertilization and band spraying, allowing the poor habitat quality of conventional maize caused by late soil tillage and lack of vegetation structure to be overcome. Field trials at two sites in Germany were conducted, testing the agricultural feasibility, ecological efficiency and yield impacts. The results show the successful establishment of the wildflower strips between the maize rows. Flowering diversity was up to eight times higher than in conventional maize crop stands. Positive implications for pollinators and ground beetles could be proved. The habitat quality for the skylark could be improved by a factor of 2–3, to nearly normal reproduction of the population. A yield reduction of at least 30% was observed. Further investigations will address this yield gap. Furthermore, the management of spontaneous weeds needs further improvement.

Keywords

Yield Intercropping Strip-till Wildflower mixture Farmland bird 

Mikrosegregation im Maisanbau – eine Chance zur Verbesserung der Biodiversität auf landwirtschaftlichen Nutzflächen

Zusammenfassung

Biodiversität in Agrarlandschaften zu schützen und zu fördern, ist ein weithin akzeptiertes Ziel. Hier wird eine Möglichkeit vorgestellt, im Maisanbau hohe Produktionsleistung mit hoher Biodiversität auf derselben Fläche zu kombinieren. Dazu werden zwischen die Maisreihen Wildpflanzen gesät, bereits nach der Ernte der letzten Hauptfrucht. Diese Blühstreifen stellen Blüten und Vegetationsstruktur innerhalb des Maisfelds bereit und fördern so viele Bereiche der Biodiversität ohne Flächenverlust für die Produktion. Das Anbausystem gründet sich auf gut eingeführte Anbautechniken wie Strip-Till, Unterflurdüngung und Bandspritzung. Diese Techniken werden so kombiniert, dass die schlechte Habitatqualität von konventionell angebautem Mais, bedingt durch die späte Bodenbearbeitung und das Fehlen von Vegetationsstruktur, deutlich aufgewertet wird. Es wurden an 2 Versuchsstandorten in Deutschland Feldversuche durchgeführt, um die landwirtschaftliche Machbarkeit, ökologische Effizienz und Auswirkungen auf die Erträge zu prüfen. Die Ergebnisse der Feldversuche zeigen, dass die Blühstreifen zwischen den Maisreihen erfolgreich etabliert werden konnten. Das Blütenangebot war mit dem neuen System bis zu 8‑mal höher als im konventionellen Maisanbau und stand die ganze Anbausaison zur Verfügung. Positive Wirkungen wurden für Bestäuber und Laufkäfer festgestellt. Die Habitatqualität für die Feldlerche erhöhte sich um den Faktor 2–3 und führte damit zu einer beinahe normalen Reproduktion der Population. Es wurde eine Ertragslücke von mindestens 30 % gemessen, die in weiteren Versuchen verringert werden soll. Auch das Management von Unkräutern in den Blühstreifen muss weiter verbessert werden.

Schlüsselwörter

Ertrag Mischkulturen Strip-Till Wildblumenmischung Ackervögel 

Notes

Acknowledgements

We thank Katrin Lück, Sigrid Ehlert, Cornelia Fischer, Edelgunde Jerusel, Petra Rischewski, Udo Wittchen and Cora Ksinzyk for their great help with the field work and data processing. This research was partly funded by the Federal Ministry of Food and Agriculture and Consumer Protection in the project “Energiemaisanbau für hohen Ertrag und Biologische Vielfalt (Vorstudie)” (grant 22011914).

Conflict of interest

C. von Redwitz, M. Glemnitz, J. Hoffmann, R. Brose, G. Verch, D. Barkusky, C. Saure, G. Berger and S. Bellingrath-Kimura declare that they have no competing interests.

References

  1. Andreasen C, Andresen L (2011) Managing farmland flora to promote biodiversity in Europe. Cab Rev 6:1–11.  https://doi.org/10.1079/pavsnnr20116047 CrossRefGoogle Scholar
  2. de Baan L, Alkemade R, Koellner T (2013) Land use impacts on biodiversity in LCA: A global approach. Int J Life Cycle Assess 18(6):1216–1230.  https://doi.org/10.1007/s11367-012-0412-0 CrossRefGoogle Scholar
  3. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol Evol (Amst) 18:182–188CrossRefGoogle Scholar
  4. Berger G, Pfeffer H, Kaechele H, Andreas S, Hoffmann J (2003) Nature protection in agricultural landscapes by setting aside unproductive areas and ecotones within arable fields (“Infield Nature Protection Spots”). J Nat Conserv 11:221–233CrossRefGoogle Scholar
  5. Bundesamt für Naturschutz (BfN) (2018) FloraWeb – Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. http://www.floraweb.de. Accessed 11 Oct 2018Google Scholar
  6. Cerrudo D, Page ER, Tollenaar M, Stewart G, Swanton CJ (2012) Mechanisms of yield loss in maize caused by weed competition. Weed Sci 60:225–232CrossRefGoogle Scholar
  7. Conrad Y, Fohrer N (2016) Simulating impacts of silage maize (Zea mays) in monoculture and undersown with annual grass (Lolium perenne L.) on the soil water balance in a sandy-humic soil in Northwest Germany. Agric Water Manag 178:52–65CrossRefGoogle Scholar
  8. von Cossel M, Lewandowski I (2016) Perennial wild plant mixtures for biomass production: Impact of species composition dynamics on yield performance over a five-year cultivation period in southwest Germany. Eur J Agron 79:74–89CrossRefGoogle Scholar
  9. Dauber J, Miyake S (2016) To integrate or to segregate food crop and energy crop cultivation at the landscape scale? Perspectives on biodiversity conservation in agriculture in Europe. Energy Sustain Soc 6(1):25CrossRefGoogle Scholar
  10. Defra (2013) Defra national statistics release: Wild bird populations in the UK, 1970 to 2012. https://www.gov.uk/government/organisations/department-for-environment-food-ruralaffairs/series/biodiversity-and-wildlife-statistics (Created 17 Oct 2013). Accessed 11 Oct 2018Google Scholar
  11. Flade M (2012) From ‘Renewable Energies’ to the biodiversity disaster—comments on the current situation of bird conservation in Germany. Vogelwelt 133:149–158Google Scholar
  12. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Animal Ecol 71(5):757–764CrossRefGoogle Scholar
  13. Gevers J, Hoye TT, Topping CJ, Glemnitz M, Schroeder B (2011) Biodiversity and the mitigation of climate change through bioenergy: Impacts of increased maize cultivation on farmland wildlife. Glob Change Biol Bioenergy 3:472–482CrossRefGoogle Scholar
  14. Glemnitz M, Zander P, Stachow U (2015) Regionalizing land use impacts on farmland birds. Environ Monit Assess 187(6):336.  https://doi.org/10.1007/s10661-015-4448-z CrossRefGoogle Scholar
  15. Haber W (2016) Flächenansprüche – Wie erfüllt man wachsende Ansprüche an begrenzte Landflächen? Schriftenr Dtsch Landeskulturges 14:23–40Google Scholar
  16. Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50(6):688–699CrossRefGoogle Scholar
  17. Hoffmann J, Wittchen U (2018) Abschätzung der Habitatwirkung veränderter Produktionsverfahren auf Indikatorvogelarten der Ackerbaugebiete im Forschungsvorhaben “Maisanbau für hohen Ertrag und biologische Vielfalt” am Beispiel der Feldlerche (Alauda arvensis). Berichte aus dem Julius Kühn-Institut, vol 195. Julius Kühn-Institut, KleinmachnowGoogle Scholar
  18. Hoffmann J, Wittchen U, Stachow U, Berger G (2016) Moving window abundance—a method to characterize the abundances dynamics of farmland birds: The example of the skylarks (Alauda arvensis). Ecol Indic 60:317–328CrossRefGoogle Scholar
  19. Hoffmann J, Wittchen U, Stachow U, Berger G (2018) Moving window growth—a method to characterize the dynamic growth of crops in the context of bird abundance dynamics with the example of the skylark (Alauda arvensis). Ecol Evol 8(17):8880–8893.  https://doi.org/10.1002/ece3.4398 CrossRefGoogle Scholar
  20. IBM (2016) SPSS statistics for windows, version 22.0. IBM Corp, ArmonkGoogle Scholar
  21. Jäger EJ (ed) (2011) Rothmaler – Exkursionsflora von Deutschland, 20th edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  22. Justes E, Beaudoin N, Bertuzzi P, Charles R, Constantin J, Dürr C, Hermon C, Joannon A, Le Bas C, Mary B, Mignolet C, Montfort F, Ruiz L, Sarthou JP, Souchère V, Tournebize J, Savini I, Réchauchère O (2012) The use of cover crops in the reduction of nitrate leaching: Impact on the water and nitrogen balance and other ecosystem services. Summary of the study report. INRA, ParisGoogle Scholar
  23. Komainda M, Taube F, Kluß C, Herrmann A (2018) Effects of catch crops on silage maize (Zea mays L.): Yield, nitrogen uptake efficiency and losses. Nutr Cycl Agroecosyst 110(1):51–69CrossRefGoogle Scholar
  24. Laloy E, Bielders CL (2010) Effect of intercropping period management on runoff and erosion in a maize cropping system. J Environ Qual 39(3):1001–1008CrossRefGoogle Scholar
  25. Leadley PW, Pereira HM, Alkemade R, Fernandez-Manjarrés JF, Proença V, Scharlemann JPW, Walpole MJ (2010) Biodiversity scenarios: Projections of 21st century change in Biodiversity, and associated ecosystem services: A technical report for the global Biodiversity outlook 3. Technical series, vol 50. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  26. McLaughlin A, Mineau P (1995) The impact of agricultural practices on biodiversity. Agric Ecosyst Environ 55(3):201–212CrossRefGoogle Scholar
  27. Meyer S, Wesche K, Krause B, Leuschner C (2013) Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s—a cross-regional analysis. Divers Distrib 19:1175–1187CrossRefGoogle Scholar
  28. Norris SL, Blackshaw RP, Dunn RM, Critchley NR, Smith KE, Williams JR et al (2016) Improving above and below-ground arthropod biodiversity in maize cultivation systems. Agric, Ecosyst Environ, Appl Soil Ecol 108:25–46.  https://doi.org/10.1016/j.apsoil.2016.07.015 CrossRefGoogle Scholar
  29. Norris SL, Blackshaw RP, Critchley CNR, Dunn RM, Smith KE, Williams J, Randall NP, Murray PJ (2018) Intercropping flowering plants in maize systems increases pollinator diversity. Agric For Entomol 20(2):246–254CrossRefGoogle Scholar
  30. Nurk L, Graß R, Pekrun C, Wachendorf M (2017) Effect of sowing method and weed control on the performance of maize (Zea mays L.) intercropped with climbing beans (Phaseolus vulgaris L.). Agric (switzerland) 7:51.  https://doi.org/10.3390/agriculture7070051 Google Scholar
  31. Page ER, Cerrudo D, Westra P, Loux M, Smith K, Foresman C, Wright H, Swanton CJ (2012) Why early season weed control is important in maize. Weed Sci 60(3):423–430CrossRefGoogle Scholar
  32. Patterson MP, Best LB (1996) Bird abundance and nesting success in Iowa CRP fields: The importance of vegetation structure and composition. Am Midl Nat 135(1):153–167CrossRefGoogle Scholar
  33. Pe’er G, Zinngrebe Y, Hauck J, Schindler S, Dittrich A, Zingg S et al (2017) Adding some green to the greening: Improving the EU’s ecological focus areas for biodiversity and farmers. Conserv Lett 10(5):517–530CrossRefGoogle Scholar
  34. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, Cooper HD, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global Biodiversity in the 21st century. Science 330(6010):1496–1501.  https://doi.org/10.1126/science.1196624 CrossRefGoogle Scholar
  35. Reeleder RD, Miller JJ, Coelho BB, Roy RC (2006) Impacts of tillage, cover crop, and nitrogen on populations of earthworms, microarthropods, and soil fungi in a cultivated fragile soil. Agric, Ecosyst Environ, Appl Soil Ecol 33(3):243–257CrossRefGoogle Scholar
  36. Robertson BA, Porter C, Landis DA, Schemske DW (2012) Agroenergy crops influence the diversity, biomass, and guild structure of terrestrial arthropod communities. Bioenergy Res 5(1):179–188CrossRefGoogle Scholar
  37. Roßberg D (2016) Erhebungen zur Anwendung von Pflanzenschutzmitteln im Ackerbau (Survey on application of chemical pesticides in agriculture). J Kultpfl 68(2):25–37Google Scholar
  38. Saska P, Němeček J, Koprdová S, Skuhrovec J, Káš M (2014) Weeds determine the composition of carabid assemblage in maize at a fine scale. Sci Agric Bohemica 2:85–92Google Scholar
  39. Statistisches Bundesamt (Destatis) (2018) Field crops and grassland. https://www.destatis.de/EN/Homepage.html. Accessed 24 Sept 2018Google Scholar
  40. Tauchnitz N, Bischoff J, Schrödter M, Ebert S, Meissner R (2018) Nitrogen efficiency of strip-till combined with slurry band injection below the maize seeds. Soil Tillage Res 181:11–18CrossRefGoogle Scholar
  41. Tissier ML, Handrich Y, Robin J‑P, Weitten M, Pevet P, Kourkgy C, Habold C (2016) How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction. Sci Rep 6:25531.  https://doi.org/10.1038/srep25531 CrossRefGoogle Scholar
  42. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(1):53–59CrossRefGoogle Scholar
  43. Verret V, Gardarin A, Pelzer E, Médiène S, Makowski D, Valantin-Morison M (2017) Can legume companion plants control weeds without decreasing crop yield? A meta-analysis. Field Crops Res 204:158–168CrossRefGoogle Scholar
  44. Wagner C, Schmidt C (2016) Blühflächen erhöhen die Tierartenvielfalt in der Feldflur. In: Bayerische Landesanstalt für Landwirtschaft (LfL) (ed) Wildtiere in der Agrarlandschaft 14. Kulturlandschaftstag, Freising, 05.10.2016 Bayerische Landesanstalt für Landwirtschaft (LfL), Freising-Weihenstephan, pp 53–62Google Scholar
  45. Wilson JD, Evans J, Brown SJ, King JR (1997) Territory distribution and breeding success of skylarks Alauda arvensis on organic and intensive farmland in southern England. J Appl Ecol 34(6):1462–1478CrossRefGoogle Scholar
  46. Wilson JD, Whittingham MJ, Bradbury RB (2005) The management of crop structure: A general approach to reversing the impacts of agricultural intensification on birds? Ibis (Lond 1859) 147:453–463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Christoph von Redwitz
    • 1
    • 2
  • Michael Glemnitz
    • 1
    Email author
  • Jörg Hoffmann
    • 3
  • Ruth Brose
    • 1
  • Gernot Verch
    • 1
  • Dietmar Barkusky
    • 1
  • Christoph Saure
    • 4
  • Gert Berger
    • 1
  • Sonoko Bellingrath-Kimura
    • 1
  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  2. 2.Federal Research Centre for Cultivated Plants JKI, Institute for Plant Protection in Field Crops and GrasslandJulius Kühn-InstitutKleinmachnowGermany
  3. 3.Federal Research Centre for Cultivated Plants JKI, Institute for Strategies and Technology AssessmentJulius Kühn-InstitutKleinmachnowGermany
  4. 4.Laboratory for Animal-Ecological StudiesBerlinGermany

Personalised recommendations