Evaluation of Quantitative and Qualitative Characteristics of Strawberry in Response to Bio- and Chemical Fertilizers

  • Farhad HabibzadehEmail author
  • Saeid Hazrati
  • Majid Gholamhoseini
  • Diako Khodaei
  • Delara Habashi
Original Article


Application of bio-fertilizers alone or in combination with chemical fertilizers is a step towards sustainable agriculture and healthy agricultural production. The current experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The treatments consisted of five different nutritional plans, i. e. bio-fertilizer, nitrogen fertilizer, bio-fertilizer plus nitrogen, conventional fertilizers and control (without fertilizer). The results showed that the highest fruits fresh weight was observed in conventional fertilizer treatment, which increased by 128% compared to the control treatment. The results showed that all nutritional plans could increase the number of fruits compared to the control treatment. The highest number of fruits was related to conventional fertilizer treatment. In comparison to control treatment, fruit length increased by 24, 66, 108 and 173% in bio-fertilizer, nitrogen, nitrogen + fertilizer and conventional fertilizer treatments, respectively. A reduction in total phenol content was observed at any treatment compared to control treatment were applied. The lowest nitrate content was found in control and bio-fertilizer treatments, whereas the highest content was related to chemical and conventional treatments. The highest and lowest vitamin C contents were seen in control and conventional treatments, respectively. The highest total soluble solid content was obtained in control treatment i. e. that total soluble solid content decreased due to fertilizers application. The L value was found to be the same in all the treatments. However, a and b values in control treatment were less than that in fertilizer treatments. The maximum chewing ability was observed in bio-fertilizer treatment. Moreover, the highest level of taste was observed in conventional and bio-fertilizer + nitrogen treatments. Therefore, by replacing chemical fertilizers with bio-fertilizers or integrated application of these fertilizers, we can not only improve quantitative and qualitative characteristics in strawberry, but also contribute to sustainability and reduction of environmental contamination.


Bio-fertilizer Color Sensory evaluation Strawberry Nitrogen 

Bewertung der quantitativen und qualitativen Eigenschaften von Erdbeeren als Folge der Anwendung von Bio- und Mineraldünger


Die Anwendung von Bio-Düngemitteln allein oder in Kombination mit Mineraldüngern ist ein Schritt in Richtung einer nachhaltigen Landwirtschaft und einer gesunden landwirtschaftlichen Produktion. Das aktuelle Experiment wurde in einem randomisierten, kompletten Blockdesign mit vier Replikationen in einem Forschungsgewächshaus angelegt. Die Behandlungen bestanden aus fünf verschiedenen Nährstoffkonzepten, d. h. Bio-Dünger, Stickstoffdünger, Bio-Dünger plus Stickstoff, konventionelle Dünger und Kontrolle (ohne Dünger). Die Ergebnisse zeigten, dass das höchste Frischgewicht der Früchte bei der konventionellen Düngemittelbehandlung beobachtet wurde; im Vergleich zur Kontrollbehandlung nahm das Frischgewicht um 128 % zu. Die Ergebnisse zeigten außerdem, dass alle Nährstoffkonzepte die Anzahl der Früchte im Vergleich zur Kontrollbehandlung erhöhen konnten. Die höchste Anzahl an Früchten ergab die konventionelle Düngemittelbehandlung. Im Vergleich zur Kontrollbehandlung nahm die Fruchtlänge bei Bio-Düngemitteln, Stickstoff, Stickstoff + Düngemittel bzw. konventionellen Düngemitteln um 24, 66, 108 und 173 % zu. Eine Verringerung des Gesamtphenolgehalts wurde verglichen mit der Kontrollbehandlung bei jeder Behandlung beobachtet. Der niedrigste Nitratgehalt wurde bei Kontroll- und Bio-Düngemittelbehandlungen festgestellt, während der höchste Gehalt bei Mineraldünger- und konventioneller Behandlung gefunden wurde. Der höchste und der niedrigste Vitamin-C-Gehalt wurden bei der Kontrolle bzw. bei konventioneller Behandlung festgestellt. Der höchste Gesamtfeststoffgehalt wurde in der Kontrollbehandlung erreicht, d. h. der Gesamtfeststoffgehalt sank durch die Düngemittelanwendung. Der L-Wert war bei allen Behandlungen gleich. Allerdings waren die a- und b-Werte in der Kontrollbehandlung geringer als bei der Düngemittelbehandlung. Die maximale Kaufähigkeit wurde bei der Behandlung mit Bio-Düngemitteln beobachtet. Darüber hinaus wurde das beste Geschmacksergebnis bei konventionellen und Bio-Düngemitteln + Stickstoffbehandlungen beobachtet. Durch den Ersatz von Mineraldünger durch Bio-Düngemittel oder die kombinierte Anwendung dieser Düngemittel können wir daher nicht nur die quantitativen und qualitativen Eigenschaften von Erdbeeren verbessern, sondern auch zur Nachhaltigkeit und Reduzierung der Umweltbelastung beitragen.


Bio-Düngemittel Farbe Sensorische Bewertung Erdbeere Stickstoff 


Conflict of interest

F. Habibzadeh, S. Hazrati, M. Gholamhoseini, D. Khodaei and D. Habashi declare that they have no competing interests.


  1. Agegnehu G, Amede T (2017) Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere 27(4):662–680CrossRefGoogle Scholar
  2. Asami DK, Hong YJ, Barrett DM, Mitchell AE (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem 51(5):1237–1241CrossRefPubMedGoogle Scholar
  3. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Bio-fertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13(1):66CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhattacharjee R, Dey U (2014) Bio-fertilizer, a way towards organic agriculture: A review. Afr J Microbiol Res 8(24):2332–2343CrossRefGoogle Scholar
  5. Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80CrossRefGoogle Scholar
  6. Dias TJ, Cavalcante LF, Freire JLDO, do Nascimento JA, Beckmann-Cavalcante MZ, dos Santos GP (2011) Chemical quality of yellow passion fruit in soil with bio-fertilizer and irrigated with saline water. Rev Bras Engen Agric Ambient-agr 15(3):229–236CrossRefGoogle Scholar
  7. El-Bassiony AM, Fawzy ZF, El-Samad EA, Riad GS (2010) Growth, yield and fruit quality of sweet pepper plants (Capsicum annuum L.) as affected by potassium fertilization. J Am Sci 6(12):722–729Google Scholar
  8. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124(1):62–66CrossRefGoogle Scholar
  9. Evans J, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24(8):755–767CrossRefGoogle Scholar
  10. Fageria NK (2016) The use of nutrients in crop plants. CRC press, Boca RatonGoogle Scholar
  11. Fatima S, Abad Farooqi AH, Ansari SR, Sharma S (1999) Effect of water stress on growth and essential oil metabolism in Cymbopogon martinii (palmarosa) cultivars. J Essent Oil Res 11(4):491–496CrossRefGoogle Scholar
  12. Food and Agriculture Organization of the United Nations (FAO) (2016) Food and agriculture organization of the united nations. Google Scholar
  13. Franz C, Kirsch C (1974) Growth and flower-bud-formation of Matricaria chamomilla L. in dependence on varied nitrogen and potassium nutrition. Hortic Sci 21:11–19Google Scholar
  14. Giampieri F, Forbes-Hernandez TY, Gasparrini M, Alvarez-Suarez JM, Afrin S, Bompadre S, Battino M (2015) Strawberry as a health promoter: An evidence based review. Food Funct 6(5):1386–1398CrossRefPubMedGoogle Scholar
  15. Gould K, Davies KM, Winefield C (eds) (2008) Anthocyanins: Biosynthesis, functions, and applications. Springer, Heidelberg, Berlin, New YorkGoogle Scholar
  16. Hassan HA (2015) Effect of nitrogen fertilizer levels in the form of organic, inorganic and bio fertilizer applications on growth, yield and quality of strawberry. Sciences 5(02):604–617Google Scholar
  17. Hernández T, Chocano C, Moreno JL, García C (2016) Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—effects on soil and plant. Soil Tillage Res 160:14–22CrossRefGoogle Scholar
  18. Kızılkaya R (2008) Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecol Eng 33(2):150–156CrossRefGoogle Scholar
  19. Letchamo W (1993) Nitrogen application affects yield and content of the active substances in chamomile genotypes. In: Janick J, Simon JE (eds) New Crops. Willey, New York, pp 636–639Google Scholar
  20. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25CrossRefPubMedGoogle Scholar
  21. Lyngdoh C, Bahadur V, David AA, Prasad VM, Jamir T (2017) Effect of organic manures, organic supplements and bio-fertilizers on growth and yield of Cowpea. Int J Curr Microbiol Appl Sci 6(8):1029–1036CrossRefGoogle Scholar
  22. Magwaza LS, Opara UL (2015) Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci Hortic 184:179–192CrossRefGoogle Scholar
  23. Marathe R, Phatake Y, Shaikh A, Shinde B, Gajbhiye M (2017) Effect of IAA produced by Pseudomonasaeruginosa 6A (BC4) on seed germination and plant growth of Glycin max. J Exp Biol Agric Sci 5:351–358Google Scholar
  24. Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40(3):255–260Google Scholar
  25. Moeini Alishah H, Heidari R, Hassani A, Asadi Dizaji A (2006) Effect of water stress on some morphological and biochemical characteristics of purple basil (Ocimum basilicum). J Biol Sci 6(4):763–767. CrossRefGoogle Scholar
  26. Morris J, Else MA, El Chami D, Daccache A, Rey D, Knox JW (2017) Essential irrigation and the economics of strawberries in a temperate climate. Agric Water Manag 194:90–99CrossRefGoogle Scholar
  27. Müller K, Hippe J (1987) Influence of differences in nutrition on important quality characteristics of some agricultural crops. In: van Diest A (ed) Proceedings of the international symposium: Plant and soil: Interfaces and interactions Wageningen, August 6–8, 1986 Martinus Nijhoff Publishers, Leiden, pp 35–45CrossRefGoogle Scholar
  28. Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34(11):1527–1536CrossRefGoogle Scholar
  29. Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556CrossRefGoogle Scholar
  30. Nestby R, Lieten F, Pivot D, Lacroix CR, Tagliavini M (2005) Influence of mineral nutrients on strawberry fruit quality and their accumulation in plant organs: A review. Int J Fruit Sci 5(1):139–156CrossRefGoogle Scholar
  31. Omidi HESHMAT, Naghdi Badi H, Golzad A, Torabi H, Footoukian MH (2009) The effect of chemical and bio-fertilizer source of nitrogen on qualitative and quantitative yield of Saffron (Crocus sativus L.). J Med Plants 2(30):98–109Google Scholar
  32. Pešaković M, Karaklajić-Stajić Ž, Milenković S, Mitrović O (2013) Bio-fertilizer affecting yield related characteristics of strawberry (Fragaria× ananassa Duch.) and soil micro-organisms. Sci Hortic 150:238–243CrossRefGoogle Scholar
  33. Prasad H, Sajwan P, Kumari M, Solanki SPS (2017) Effect of organic manures and bio-fertilizer on plant growth, yield and quality of horticultural crop: A review. Int J Comput Syst 5(1):217–221Google Scholar
  34. Pırlak L, Köse M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32(7):1173–1184CrossRefGoogle Scholar
  35. Rueda D, Valencia G, Soria N, Rueda BB, Manjunatha B, Kundapur RR, Selvanayagam M (2016) Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. J Appl Pharm Sci 6(01):48–54CrossRefGoogle Scholar
  36. Saeed KS, Ahmed SA, Hassan IA, Ahmed PH (2015) Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus). Pak J Biol Sci 18(3):129–134CrossRefGoogle Scholar
  37. Saini RS, Sharma KD, Dhankhar OP, Kaushik RA (2001) Laboratory manual of analytical techniques in horticulture. Agrobios, JodhpurGoogle Scholar
  38. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci 29(1):90–98CrossRefGoogle Scholar
  39. Singh A, Singh JN (2009) Effect of bio-fertilizers and bioregulators on growth, yield and nutrient status of strawberry cv. Sweet Charlie. Indian J Hortic 66(2):220–224Google Scholar
  40. Singh AKATH, Singh JN (2006) Studies on influence of bio-fertilizers and bioregulators on flowering, yield and fruit quality of strawberry cv. sweet Charlie. Ann Agric Res 27(3):261–264Google Scholar
  41. Tittarelli F, Ceglie FG, Ciaccia C, Mimiola G, Amodio ML, Colelli G (2017) Organic strawberry in Mediterranean greenhouse: Effect of different production systems on soil fertility and fruit quality. Renew Agric Food Syst 32(6):485–497CrossRefGoogle Scholar
  42. Tomic JM, Milivojevic JM, Pesakovic MI (2015) The response to bacterial inoculation is cultivar-related in strawberries. Turk J Agric For 39(2):332–341CrossRefGoogle Scholar
  43. Umar I, Wali VK, Kher R, Jamwal M (2009) Effect of Fym, urea and azotobacter on growth, yield and quality of Strawberry Cv. Chandler. Not Bot Horti Agrobot Cluj 37(1):139–143Google Scholar
  44. Umar I, Wali VK, Rehman MU, Mir MM, Banday SA, Bisati IA (2010) Effect of subabul (Leucaenaleucocephala), urea and bio-fertilizer application on growth, yield and quality of strawberry cv. Chandler. Appl Biol Res 12(2):50–54Google Scholar
  45. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573CrossRefPubMedCentralGoogle Scholar
  46. Vessey JK (2003) Plant growth promoting rhizobacteria as bio-fertilizers. Plant Soil 255(2):571–586CrossRefGoogle Scholar
  47. Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48(11):5677–5684CrossRefPubMedGoogle Scholar
  48. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365CrossRefPubMedGoogle Scholar
  49. Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci Total Environ 512:415–427CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Farhad Habibzadeh
    • 1
    Email author
  • Saeid Hazrati
    • 2
  • Majid Gholamhoseini
    • 3
  • Diako Khodaei
    • 4
  • Delara Habashi
    • 1
  1. 1.Department of Genetics and Plant Breeding, Faculty of Agriculture and Natural ResourcesImam Khomeini International UniversityQazvinIran
  2. 2.Department of Agronomy, Faculty of AgricultureAzarbaijan Shahid Madani UniversityTabrizIran
  3. 3.Seed and Plant Improvement Institute, Agricultural ResearchEducation and Extension Organization (AREEO)KarajIran
  4. 4.Department of Food Sciences, Faculty of AgricultureTarbiat Modares UniversityTehranIran

Personalised recommendations