Advertisement

Gesunde Pflanzen

, Volume 71, Issue 1, pp 9–18 | Cite as

Agronomic and Anatomical Performance of Wheat Genotypes in Response to Some Weed Control Treatments Under Sandy Soil Conditions

  • I. M. El-MetwallyEmail author
  • S. A. Arafa
Original Article
  • 32 Downloads

Abstract

Field evaluations of the efficiency of wheat genotypes and weed management treatments (pyroxsulam, isoproturon+diflufenican, mesosulfuron-methyl, hand weeding and control) and their interactive effects on wheat yield and associated weeds were performed during two successive seasons (2014/2015 and 2015/2016) at the agricultural experimental station of the National Research Centre, Nubaria, Egypt. Results showed that Gemmeiza-9 cultivar recorded the lowest values regarding dry weights of broadleaved, narrow-leaved and total weeds. Also, isoproturon+diflufenican achieved the maximum weed depression expressed in lowest dry material of broadleaved, narrow-leaved and whole weeds. The Gemmeiza-9 cultivar had the greatest plant height, number of spikes per m2, 1000 grains’ weight, and grain and straw yields per hectare. Moreover, the maximum values of the yield parameter were obtained from isoproturon+diflufenican application, followed by pyroxsulam and mesosulfuron-methyl. Application of isoproturon+diflufenican led to considerable anatomical effects on the leaves of either wheat or its associated weeds. In general, herbicide treatments caused a cell wall thickening and reduction in leaf and midrib thickness either in wheat or its associated weeds. Post-emergence herbicides (isoproturon+diflufenican) integrated with the Gemmeiza-9 genotype gave the highest values of productivity of wheat under sandy soil conditions.

Keywords

Weed Wheat yield Leaf anatomy Varietal variation Herbicides 

Agronomische und anatomische Leistungsfähigkeit von Weizengenotypen als Reaktion auf Unkrautbekämpfungsmaßnahmen unter sandigen Bodenbedingungen

Zusammenfassung

Die Feldstudien zur Effizienz von Weizengenotypen und Unkrautbekämpfungsmitteln (Pyroxsulam, Isoproturon + Diflufenican, Mesosulfuronmethyl, Handjäten und Kontrolle) und ihre wechselseitigen Auswirkungen auf den Weizenertrag und die damit auftretenden Unkräuter wurden während 2 aufeinanderfolgenden Saisons (2014/2015 und 2015/2016) in der landwirtschaftlichen Versuchsstation des Nationalen Forschungszentrums, Nubaria, Ägypten, durchgeführt. Die Ergebnisse zeigten, dass die Sorte Gemmeiza-9 die niedrigsten Werte in Bezug auf das Trockengewicht von breitblättrigen, schmalblättrigen und Gesamtunkräutern aufwies. Außerdem erreichte Isoproturon + Diflufenican den maximalen Unkrautrückgang, d. h. das niedrigste Trockengewicht von breitblättrigen, schmalblättrigen und Gesamtunkräutern. Die Sorte Gemmeiza-9 hatte die größte Pflanzenhöhe, die höchste Ährenzahl pro Quadratmeter, die höchste Tausendkornmasse und den höchsten Ertrag an Getreide und Stroh pro Hektar. Darüber hinaus erbrachte die Anwendung von Isoproturon + Diflufenican Maximalwerte in Bezug auf die Ertragsparameter, es folgten Pyroxsulam und Mesosulfuronmethyl. Die Anwendung von Isoproturon + Diflufenican führte zu erheblichen anatomischen Auswirkungen auf die Blätter von Weizen oder den damit auftretenden Unkräutern. Im Allgemeinen führten Herbizidbehandlungen zu einer Zellwandverdickung und Verringerung der Blatt- und Mittelrippendicke bei Weizen oder den damit auftretenden Unkräutern. Nachlaufherbizide (Isoproturon + Diflufenican) in Kombination mit dem Genotyp Gemmeiza-9 ergaben die höchsten Werte für die Produktivität von Weizen unter sandigen Bodenverhältnissen.

Schlüsselwörter

Gras Weizenausbeute Blattanatomie Sortenvariation Herbizide 

Notes

Conflict of interest

The authors have no conflict of interest.

References

  1. Abbas SH, Saleem M, Maqsood M, Mujahid MY, Ul-Hassan M, Saleem R (2009) Weed density and grain yield of wheat as affected by spatial arrangements and weeding techniques under rain fed conditions of Pakistan. J Agric Sci 46(4):354–359Google Scholar
  2. Abd El-Maaboud MSh (2006) Effect of mineral, biological nitrogen and phosphorous fertilization on some wheat cultivars under salinity condition at Ras Surd. J Agric Sci Mansoura Univ 31(11):6839–6853Google Scholar
  3. Abd El-Salam MS, El-Metwally IM, Abd El Lateef EM, Ahmed MA (2016) Effect of weed control and proline treatment on wheat productivity and weed nutrient removal under water stress conditions. Int J Chemtech Res 9(7):18–31Google Scholar
  4. Abdelkhalek AA, Kh. Darwesh R, El-Mansoury MAM (2015) Response of some wheat varieties to irrigation and nitrogen fertilization using ammonia gas in North Nile Delta region. Ann Agric Sci 60(2):245–256Google Scholar
  5. Abdrabbo MAA, Hashem FA, Abou-Hadid AF (2016) Irrigation requirement for some bread wheat cultivars in relation to planting dates. J Agric Sci Res 3(1):23–40Google Scholar
  6. Amare T (2014) Effect of weed management methods on weeds and wheat (Triticum aestivum L.) yield. African J Agric Res 9(24):1914–1920Google Scholar
  7. Atia RH, Ragab KE (2013) Response of some wheat varieties to nitrogen fertilization. Soil Sci Agric Eng 4(3):309–319Google Scholar
  8. Cali I (2007) Domates (Lycopersicumesculentum Mill.) bitkisinde Metaxyl ’in stomelar Üzerindeki etkisi. Cukurova üniversitesi Fen-edebiyat Fakültesi Fen Bilinleri Dergisi 28:28–39Google Scholar
  9. Chapman HD, Pratt RF (1978) Methods analysis for soil, plant and water. University of California, Riverside, pp 16–38Google Scholar
  10. Dixon RA, Lamb C (1990) Molecular Communication in interactions between plant and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367CrossRefGoogle Scholar
  11. El-Metwally IM (2002) Performance of some wheat cultivars and associated weeds to some weed control treatments. Zagazig J Agric Res 29(6):1907–1927Google Scholar
  12. El-Metwally IM, Abd El-Salam MS, Ali OAM (2015a) Effect of zinc application and weed control on wheat yield and its associated weeds grown in zinc-deficient soil. Int J Chemtech Res 8(4):1588–1600Google Scholar
  13. EL-Metwally IM, Ali AM, Abdelhamid MT (2015b) Response of wheat (Triticum aestivum L.) and associated weeds grown in salt-affected soil to interactive effects of weed management and indole acetic acid. Agric (poľnohospodárstvo) 61(1):1–11Google Scholar
  14. El-Wakeel MA (2015) Effect of Allelopathy and Autotoxof some plants as well as herbicides on wheat and associated weeds. Benha Univ, BenhaGoogle Scholar
  15. Esau K (1977) Anatomy of seed plants. John Wiley & Sons, New York, TorontoGoogle Scholar
  16. Fahn A (1977) Plant anatomy. Pergamon Press, Frankfurt , New YorkGoogle Scholar
  17. Genene, G. and H. Soboka (2001). Agronomic research recommendation and seed production maintenance techniques for major crops training manual for DA of highland Bale Sinan-Ethiopia pp 9–15.Google Scholar
  18. Gerlach D (1977) Botanische Mikrotechnik . Eine Einfuehrung, 2nd edn. Thieme, StuttgartGoogle Scholar
  19. Gomez KA, Gomez EA (1984) Statistical procedures for agricultural research, 2nd edn. John Wiley and Sons Inc, New York, p 703Google Scholar
  20. Kaufman PB, Dayanandan P, Franklin CI, Takeoka Y (1985) Structure and Function of silica bodies in the epidermal system of grass shoot. Ann Bot 5(5):487–507CrossRefGoogle Scholar
  21. Mahmud MS, Morsy ASM, Fakkar AAO (2016) Evaluation of some bread wheat cultivars under different seeding rates and weed control treatments. J Plant Prod Mansoura Univ 7(12):1339–1348Google Scholar
  22. Marwat KB, Saeed M, Hussain Z, Gul B, Rashid H (2008) Study of various weed management practices for weed control in wheat under irrigated conditions. Pakistan J Weed Sci Res 14(1–2):1–8Google Scholar
  23. Mehawed HS (2015) The response of wheat crop to fertilization under sprinkler irrigation system in sandy soils. J soil Sci Agric Eng Mansoura Univ 6(1):1–11Google Scholar
  24. Meysam B, Saeed S (2015) Effect of seed rate and post emergence herbicide application on weed infestation and subsequent crop performance of wheat (Triticum aestivum L.). Walla J 31(53):158–162Google Scholar
  25. Muhammad A, Hussain M, Hussain G, Rashid A (2007) Efficacy of different herbicides for weed control in wheat crop. Pak J Weed Sci Res 13(1):1–7Google Scholar
  26. Nejad AY, Fazel MA, Hmadreza A (2013) Evaluating the effects of Atlantis, Granstar and Topic herbicides and split of nitrogen fertilizer on controlling weeds of D79-15 wheat conducted in Behbahan city. Int J Agric Crop Sci 5(21):2584–2587Google Scholar
  27. Öztürk I, Tort N, Tosun N (2006) Metalyxyl uygulamasinin domates (Lycopersicumesculentum Mill.)m anatomik yapisi üzerindeki etkisi. Ankara Univ Ziraal Fak Tarim Bilimleri Dergisi 12:14–22Google Scholar
  28. Said T, Abd El-Moneem AMA (2016) Response of some bread wheat cultivars to nitrogen fertilizer splitting under sandy soil condition. J Agric Sci Mansoura Univ 7(9):1013–1019Google Scholar
  29. Salahuddin MA, Alluddin (2016) Impact of various herbicides on dicot weeds in wheat (Triticum aestivum L.). Curr Sci Perspect 2(3):45–51Google Scholar
  30. Salem NRA, Abdel Dayem SM (2006) Inheritance of some agronomic traits in wheat under drought condition. J Agric Sci Mansoura Univ 31(11):6867–6872Google Scholar
  31. Shaban SA, Soliman S, Yehia ZR, El Attar MH (2009) Weed competition effects on some Triticum aestivum quality and quantity components. Egypt J Agron 31:135–147Google Scholar
  32. Shehazd MA, Nadeem MA, Iqbal M (2012) Weed control and yield attributes against post-emergence herbicides application in wheat crop, Punjab, Pakistan. Glob Adv Res J Agric Sci 1:7–16Google Scholar
  33. Singh RK, k. Singh SR, Gautam US (2013) Efficiency of herbicides in irrigated wheat (Triticum aestivum L.). Indain J S Ext Edu 13(1):126–128Google Scholar
  34. Soliman SE (2006) Productivity of some Gemmeiza wheat cultivars under different sowing dates and N fertilization levels. J Agric Sci Mansoura Univ 31(11):6873–6885Google Scholar
  35. Tagour RMH, Abd EL-Hamed GM, EL-Metwally IM (2011) Improving herbicides efficiency of Topik and Traxos on wheat plants and associated weeds by adjuvants. Arkopal J Nature Sci 9(11):138–176Google Scholar
  36. Taiadod G, Moogouei R (2012) The study of anatomical changes under the influence of Cesium uo take in Chenopodium album L. Ann Biol Res 3:1582–1592Google Scholar
  37. Tort N, Ozturk I, Tosun N (2004) The effects of fungicides application on anatomical structures and physiology of tomato (Lycopersicum esculentum Mill.). J Ege Univ Fac Agric 41(2):111–122Google Scholar
  38. Yilmaz G, Dane F (2013) Phytotoxic effects of herbicide attribute and surfactant Biopower on the root , stem and leaf anatomy of Triticumaestivum. Pehlivan Turkish J Botany 37:886–893CrossRefGoogle Scholar
  39. Yüce S, A Gürel, B Tanyolac, I Özmen, Ö Degirmencioglu, B Bengül (1998) Bitkilerde Stress Fizyolojisinin Moleküler Temelleri Ege Ü. Ziraat Fak., EÜ. Bilim-Teknolon Uygulama ve Arastirma Merkezi, Bornova, Izmir.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Botany Dep.National ResearchCentreDokki, CairoEgypt
  2. 2.Botany Dept. Fac. Agric.Mansoura Univ.MansouraEgypt

Personalised recommendations