Gesunde Pflanzen

, Volume 71, Issue 1, pp 37–44 | Cite as

Seed Priming with Micronutrients for Improving the Quality and Yield of Hybrid Maize

  • Tassadduq RasoolEmail author
  • Riaz Ahmad
  • Muhammad Farooq
Original Article


Seed priming is a pragmatic, easy approach and an effective technique. It may prove to be an alternate approach to soil and foliar application of micronutrients. In this study, the effect of micronutrient seed priming at different concentrations and combinations was evaluated on the productivity of hybrid maize (DK-6578). For priming maize seeds were soaked for 8 h in various solutions of zinc (0.5%), boron (0.01%), manganese (0.01%), boron + zinc (0.01% + 0.5%), boron + manganese (0.01% + 0.1%), and boron + zinc + manganese (0.01% + 0.5% + 0.1%). For comparison, seeds were also soaked in simple water (distilled), i. e. hydropriming, and untreated seeds were taken as control. Seed priming in all the treatments substantially induced the early emergence of maize compared to control. Likewise, highest grain yield, biological yield, cob length, grain rows per cob, grains per cob and 1000-grain weight were observed in plants raised from primed seeds, while boron + zinc + manganese priming (0.01% + 0.5% + 0.1%) was the best treatment. Similarly, maximum boron (77.60 mg/kg) and protein contents (10.82%) were observed in boron + zinc + manganese (0.01% + 0.5% + 0.1%) primed seeds, followed by boron + zinc (0.01% + 0.5%). In conclusion, different seed priming strategies improved emergence, yield and quality of maize. The combined application of boron, zinc, and manganese (0.01% + 0.5% + 0.1%) for seed priming was the most effective treatment technique.


Micronutrients Protein Hydropriming Osmopriming Seed treatment 

Saatgutvorbehandlung mit Mikronährstofflösung zur Verbesserung der Qualität und des Ertrags von Hybridmais


Saatgutvorbehandlung ist eine pragmatische, leicht zugängliche und effektive Technik, die ein alternativer Ansatz für die Boden- und Blattaufbringung von Mikronährstoffen sein kann. In dieser Studie untersucht wurde der Effekt einer Saatgutvorbehandlung mit Mikronährstoffen in verschiedenen Konzentrationen und Kombinationen auf die Produktivität von Hybridmais (DK-6578). Für die Aufbereitung wurden Maissamen 8 h lang in verschiedenen Lösungen aus Zink (0,5 %), Bor (0,01 %), Mangan (0,01 %), Bor + Zink (0,01 % + 0,5 %), Bor + Mangan (0,01 % + 0,1 %), Bor + Zink + Mangan (0,01 % + 0,5 % + 0,1 %) quellen gelassen. Zum Vergleich wurden Maissamen in destilliertem Wasser quellen gelassen (Hydropriming), und unbehandeltes Saatgut diente als Kontrolle. Die Saatgutvorbehandlung führte im Wesentlichen dazu, dass der Mais im Vergleich zur Kontrolle früh aufging. Die höchste Kornernte, der höchste biologische Ertrag, die größte Kolbenlänge, die meisten Kornreihen pro Kolben, die meisten Körner pro Kolben und die höchste Tausendkornmasse wurden bei Pflanzen beobachtet, die aus vorbehandeltem Saatgut hervorgingen. Dabei war die Kombination Bor + Zink + Mangan (0,01 % + 0,5 %+ 0,1 %) die beste Behandlungsmethode. Ebenso wurden maximale Bor- (77,60 mg/kg) und Proteingehalte (10,82 %) bei mit Bor + Zink + Mangan (0,01 % + 0,5 % + 0,1 %) vorbehandelten Samen beobachtet, gefolgt von Bor + Zink (0,01 % + 0,5 %). Zusammenfassend lässt sich sagen, dass verschiedene Strategien zur Saatgutvorbehandlung das Aufgehen, den Ertrag und die Qualität von Mais verbessern. Dabei hat sich die Kombination von Bor, Zink und Mangan (0,01 % + 0,5 % + 0,1 %) als die effektivste erwiesen.


Mikronährstoffe Protein Hydropriming Osmopriming Saatbehandlung 


Conflict of interest

T. Rasool, R. Ahmad and M. Farooq declare that they have no competing interests.


  1. Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636CrossRefGoogle Scholar
  2. Alam SM, Raza S (2001) Micronutrient fertilizers. Pak J Biol Sci 4(11):1446–1450CrossRefGoogle Scholar
  3. Aziza A, Haben A, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of phosphorus and Zn deficiency. J Plant Nutr Soil Sci 167:630–636CrossRefGoogle Scholar
  4. Bakhtavar MA, Afzal I, Basra SMA, Haq A, Noor MA (2015) Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLOS ONE 10(4):e0124441CrossRefGoogle Scholar
  5. Basra SMA, Farooq M, Tabassam R, Ahmad N (2005) Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci Technol 33:623–628CrossRefGoogle Scholar
  6. Bingham FT (1982) Boron. In A. L. Page (ed.), Methods of soil analysis, Part 2: Chemical and mineralogical properties. Amer Soc Agron, Madison, WI, USA, p 431–448Google Scholar
  7. Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hortic Sci 21:1105–1112Google Scholar
  8. Brown PH, Bellaloui N, Wimmer MA, Bassil ES, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V (2002) Boron in plant biology. Plant Biol (Stuttg) 2:205–223CrossRefGoogle Scholar
  9. Cakmak I, Kalayci M, Ekiz H, Braun HJ, Kilinc Y, Yilmaz A (1999) Zinc deficiency as an actual problem in plant and human nutrition in Turkey: a NATO-science for stability project. Field Crops Res 60:175–188CrossRefGoogle Scholar
  10. Chapman HD, Pratt PF (1961) Methods of analysis for soils, plants and water. Univ. California, Berkeley, CA, USAGoogle Scholar
  11. Davis JG, Quick JS (1998) Nutrient management, cultivar development and selection strategies to optimize water use efficiency. J Crop Prod 1:221–240CrossRefGoogle Scholar
  12. Dye TDV, Pelto G, Kristensen S, Samen A, Dozier A (2015) Attitudes and practices towards micronutrient supplementation among pregnant women in rural Tibet. Glob Public Health 10:119–128CrossRefGoogle Scholar
  13. Ellis RA, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409Google Scholar
  14. Fageria NK, Baligar VC, Li YC (2008) The role of nutrient efficient plants in improving crop yields in twenty first century. J Plant Nutr 31:1121–1157CrossRefGoogle Scholar
  15. Farooq M, Basra SMA, Khalid M, Tabassum R, Mahmood T (2006) Nutrienthomeostasis, reserves metabolism and seedling vigor as affected by seed priming in coarse rice. Can J Bot 84:1196–1202CrossRefGoogle Scholar
  16. Farooq M, Basra SMA, Rehman H, Hafeez K, Ahmad N (2005) Thermal hardening: a new seed vigor enhancement tool in rice. J Integr Plant Biol 47:187–193CrossRefGoogle Scholar
  17. Farooq M, Rehman A, Aziz T, Habib M (2011) Boron nutripriming improves the germination and early seedling growth of rice (Oryza sativa L.). J Plant Nutr 34:1507–1515CrossRefGoogle Scholar
  18. Farooq M, Wahid A, Siddique KHM (2012) Micronutrient application through seed treatments—a review. J Soil Sci Plant Nutr 12:125–142CrossRefGoogle Scholar
  19. Gaind S, Singh YV (2015) Relative efficiency of fertilization practices to improve productivity and phosphorus balance in rice-wheat cropping system. J Crop Improv 29:23–29CrossRefGoogle Scholar
  20. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848CrossRefGoogle Scholar
  21. Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluska F (2001) Rapid response reactions of roots to boron deprivation. J Plant Nutr Soil Sci 164:173–181CrossRefGoogle Scholar
  22. Government of Pakistan (2015) Economic survey of Pakistan, 2014–2015. Ministry of Food, Agriculture and livestock Division, IslamabadGoogle Scholar
  23. Grzebisz W, Wrońska M, Diatta JB, Szczepaniak W (2008) Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part II: nitrogen uptake and dry matter accumulation patterns. J Elementol 13:29–39Google Scholar
  24. Harris D, Tripathi RS, Joshi A (2000) On-farm seed priming to improve crop establishment and yield in direct-seeded rice. IRRI: International Workshop on Dry-seeded Rice Technology, Bangkok, 25–28 January 2000 International Rice Research Institute, Manila, p 164Google Scholar
  25. Kataki PK, Bedi S, Arora CL, Lauren JG, Duxbury JM (2008) Performance of micronutrient enriched wheat seeds on three soil types. J N Seeds 3:13–21CrossRefGoogle Scholar
  26. Kaya C, Higgs D, Burton A (2002) Phosphorus acid phosphates enzyme activity in leaves of tomato cultivars in relation to Zn supply. Commun Soil Sci Plant Anal 31:3239–3248CrossRefGoogle Scholar
  27. Khalid BY, Malik NSA (1982) Presowing soaking of wheat seeds in copper and manganese solutions. Commun Soil Sci Plant Anal 13:981–986CrossRefGoogle Scholar
  28. Khaliq A, Matloob A, Mahmood S, Wahid A (2013) Seed pre-treatments help improve maize performance under sorghum allelopathic stress. J Crop Improv 27:586–605CrossRefGoogle Scholar
  29. Khoufi S, Khamassi K, Silva JATD, Aoun N, Rezgui S, Jeddi FB (2012) Seed quality-related traits influence germination of helianthus annuus l. grown under three levels of water supply. J Crop Improv 26:842–853CrossRefGoogle Scholar
  30. Muhammad I, Kolla M, Volker R, Gunter N (2015) Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. J Plant Nutr 38:1803–1821CrossRefGoogle Scholar
  31. Nayyar VK, Arora CL, Kataki PK (2008) Management of soil micronutrient deficiencies in the rice-wheat cropping system. J Crop Prod 4:87–131CrossRefGoogle Scholar
  32. Potarzycki J, Grzebisz W (2009) Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ 55:519–527CrossRefGoogle Scholar
  33. Rashid A, Ryan J (2004) Micronutrient constraints to crop production in soils with mediterranean-type characteristics: a review. J Plant Nutr 27:959–975CrossRefGoogle Scholar
  34. Rehman AU, Farooq M, Cheema ZA, Wahid A (2013) Role of boron in leaf elongation and tillering dynamics in fine-grain aromatic rice. J Plant Nutr 36:42–54CrossRefGoogle Scholar
  35. Scott JM (2008) Delivering fertilizers through seed coatings. J Crop Prod 1:197–220CrossRefGoogle Scholar
  36. Shuman LM (2008) Micronutrient fertilizers. J Crop Prod 1:165–195CrossRefGoogle Scholar
  37. Siddiqui MH, Oad FC, Abbasi MK, Gandahi AW (2009) Zinc and boron fertility to optimize physiological parameters, nutrient uptake and seed yield of sunflower. Sarhad J Agric 25(1):53–57Google Scholar
  38. Singh B, Natesan SKA, Singh BK, Usha K (2005) Improving zinc efficiency of cereals under zinc deficiency. Curr Sci 88:36–44Google Scholar
  39. Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222Google Scholar
  40. Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics. A biometrical approach, 3rd edn. McGraw-Hill, New York, pp 172–177Google Scholar
  41. Stout PR, Arnon DI (1939) Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants. Am J Bot 26:144–149CrossRefGoogle Scholar
  42. Zafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198:38–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Tassadduq Rasool
    • 1
    Email author
  • Riaz Ahmad
    • 1
  • Muhammad Farooq
    • 1
    • 2
    • 3
  1. 1.Department of AgronomyUniversity of AgricultureFaisalabadPakistan
  2. 2.Department of Crop Sciences, College of Agricultural and Marine SciencesSultan Qaboos UniversityMuscatOman
  3. 3.Institute of AgricultureThe University of Western AustraliaCrawleyAustralia

Personalised recommendations