Gesunde Pflanzen

, Volume 65, Issue 3, pp 107–112 | Cite as

Fruit Quality and Yield in Partially Defoliated Strawberry Plants in the Tropical Highlands

  • Fánor Casierra-PosadaEmail author
  • I. D. Torres
  • M. M. Blanke
Original Article


The partial loss or reduction of leaf area is a wide-spread occurrence in the plant life cycle, caused e.g. by herbivory, stress or pathogen attack. The objective of the study was to evaluate the effect of partial defoliation on fruit production and quality in strawberry (Fragaria ×ananassa Duch. cv. Chandler). Plants were grown in a greenhouse in Tunja, Colombia, in hydroponics with an aerated nutrient solution. As leaves emerged, one or two leaflets were removed from each compound leaf, to attain 38 % and 67 % reduction of leaf area. Control plants grew intact, without defoliation. Fruit yield and fruit quality characteristics were evaluated for each plant. The pH, total soluble solids, ratio of total soluble solids to fruit juice acidity, fruit yield, fruit mass and size, and the ratio of leaf area/fruit yield were reduced drastically in defoliated plants. Leaf area reduction in excess of 38 % adversely affected physical and chemical characteristics of strawberry fruit, which did not meet marketing criteria.


Abiotic stress Defoliation Strawberry (Fragaria × ananassa Duch.Leaf area Fruit quality 

Fruchtqualität und Ertrag teil-entblätterter Erdbeeren in tropischen Höhenlagen


Im Laufe ihres Lebens sind Pflanzen oft einer teilweisen Reduzierung ihrer Blattfläche ausgesetzt. Die Ursachen können unterschiedlicher Natur sein, wie etwa Herbivorie, Pathogenbefall oder Stress. Um den Effekt einer Teilentlaubung auf den Ertrag und Furchtqualität von Erdbeeren (Fragaria × ananassa) der Sorte Chandler zu untersuchen, wurde ein Gewächshausversuch in Tunja/Kolumbien durchgeführt. Die Pflanzen wuchsen in Hydrokultur mit belüfteter Nährlösung. Ein oder zwei Fiederblättchen jedes neuen dreiteiligen Laubblattes wurden entfernt. So wurde die Blattfläche um 38 % oder 67 % reduziert. Die Kontrollpflanzen blieben intakt ohne Entlaubung. Der Ertrag und die Qualitätseigenschaften der Früchte wurden untersucht: Die lösliche Trockensubstanz, der pH-Wert, das Zucker/Säure Verhältnis, das Fruchtgewicht, die Fruchtgröße und das Blattfläche/Ertragverhältnis sanken stark durch die Entlaubung. Daraus wurde geschlossen, dass eine Abnahme der Blattfläche über 38 % den Ertrag und die physikalisch- und chemischen Eigenschaften der Früchte reduziert. Außerdem erreichten die Früchte teil-entblätterter Pflanzen nicht die geforderte Vermarktungsqualität.


Abiotischer Stress Entblätterung Fragaria × ananassa Duch Blattfläche Ertrag Fruchtqualität 



The team gratefully acknowledges the generous support of the Research Directorate (Dirección de Investigaciones-DIN) of the Pedagogical and Technological University of Colombia (UPTC) for providing us with the funding and opportunity to conduct this research project. We also gratefully acknowledge matching support from the members of the Research Group in Plant Ecophysiology (Grupo Ecofisiología Vegetal) of the Faculty of Agricultural Sciences of the UPTC.


  1. Albregts EE, Howard CM, Chandler CK (1992) Defoliation of strawberry transplants for fruit production in Florida. HortScience 27(8):889–889Google Scholar
  2. Andrieu E, Debussche M, Munoz F, Thompson JD (2011) How does herbivory affect individuals and populations of the perennial herb Paeonia officinalis? Flora 206:544–549CrossRefGoogle Scholar
  3. Blanke MM (2009) Regulatory mechanisms in source sink relationships in plants—a review. Acta Hort 835:123–120Google Scholar
  4. Blanke MM, Cooke DA (2000) Respiration and ATPase in strawberry stolons. Plant Growth Regul 30:163–170CrossRefGoogle Scholar
  5. Blanke MM, Cooke DA (2004) Effects of water stress on transpiration and water channel activity of strawberry leaves and stolons. Plant Growth Regul 42:153–160CrossRefGoogle Scholar
  6. Bledsoe AM, Kliewer WM, Marois JJ (1988) Effects of timing and severity of leaf removal on yield and fruit composition of Sauvignon Blanc grapevines. Am J Enol Viticult 39(1):49–54Google Scholar
  7. Carlen C, Potel AM, Ançay A (2007) Influence of leaf/fruit ratio of strawberry plants on the sensory quality of their fruits. Acta Hort 761:121–126Google Scholar
  8. Casierra-Posada F, García N (2005) Crecimiento y distribución de materia seca en cultivares de fresa (Fragaria sp.) bajo estrés salino. Agron Colomb 23(1):83–89Google Scholar
  9. Casierra-Posada F, Vargas YA (2007) Crecimiento y producción de fruta en cultivares de fresa (Fragaria sp.) afectados por encharcamiento. Rev Colomb Cienc Hortíc 1(1):21–32Google Scholar
  10. Casierra-Posada F, Rodríguez JI, Cárdenas-Hernández J (2007) La relación hoja: fruto afecta la producción, el crecimiento y la calidad del fruto en duraznero (Prunus persica L. Batsch, cv. ‘Rubidoux’). Rev Fac Nal Agr 60(1):3657–3669Google Scholar
  11. Cordenunsi BR, Do Nascimento JRO, Genovese MI, Lajolo FM (2002) Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. J Agr Food Chem 50(9):2581–2586CrossRefGoogle Scholar
  12. Delhomez N, Carisse O, Carisse M, Khanizadeh S (1995) Susceptibility of strawberry cultivars and advanced selections to leaf spot caused by Mycosphaerella fragariae. Hort Sci 30(3):592–595Google Scholar
  13. Fitzgerald J (2004) Laboratory bioassays and field evaluation of insecticides for the control of Anthonomus rubi, Lygus rugulipennis and Chaetosiphon fragaefolii, and effects on beneficial species, in UK strawberry production. Crop Prot 23:801–809CrossRefGoogle Scholar
  14. Guentzel JL, Callan MA, Lam KL, Emmons SA, Dunham VL (2011) Evaluation of electrolyzed oxidizing water for phytotoxic effects and pre-harvest management of gray mold disease on strawberry plants. Crop Prot 30:1274–1279CrossRefGoogle Scholar
  15. Hansen P (1989) Source-sink relations in fruits IV. Fruit number and fruit growth in strawberries. Acta Hort 265:377–381Google Scholar
  16. Jackson RS (1994) Wine science, principles and practices. Academic Press, New YorkGoogle Scholar
  17. Juárez-Rosete CR, Rodríguez-Mendoza MN, Sandoval-Villa M, Muratalla-Lúa A (2007) Comparación de tres sistemas de producción de fresa en invernadero. Terra Latinoamericana 25(1):17–23Google Scholar
  18. Kozlowski TT, Pallardy SG (1996) Growth control in woody plants. Academic Press, San DiegoGoogle Scholar
  19. Mohamed FH (2002) Effect of transplant defoliation and mulch color on the performance of three strawberry cultivars grown under high tunnel. Acta Hort 567:483–485Google Scholar
  20. Morrison JC, Noble AC (1990) The effects of leaf and cluster shading on the composition of Cabernet Sauvignon grapes and on fruit and wine sensory properties. Am J Enol Viticult 41(3):193–200Google Scholar
  21. Perez AG, Olias R, Espada J, Olias JM, Sanz C (1997) Rapid determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and other fruits. J Agr Food Chem 45(9):3545–3549CrossRefGoogle Scholar
  22. Poorter H, Van Der Werf A (1998) Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, LeidenGoogle Scholar
  23. Puffer RE, Voth V, Bowen HJ, Gupp RH (1968) Effects of Alar and top removal on yield of Fresno strawberries at three digging dates. Calif Agr 22(2):11–13Google Scholar
  24. Rand TA (2002) Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution. Oecologia 132:549–558CrossRefGoogle Scholar
  25. Roudeillac P, Trajkovski K (2004) Breeding for fruit quality and nutrition in strawberries. Acta Hort 649:55–59Google Scholar
  26. Smit B, Stachowiak M, Van Volkenburgh E (1989) Cellular processes limiting leaf growth in plants under hypoxic root stress. J Exp Bot 40:89–94CrossRefGoogle Scholar
  27. Sruamsiri P, Lenz F (1995) Photosynthese und stomatäres Verhalten bei Erdbeeren, Gartenbauwissenschaft-EJHS 50:78–83Google Scholar
  28. Whitehouse AB, Johnson AW, Simpson DW (2009) Manipulation of the production pattern of everbearing cultivars by defoliation treatments. Acta Hort 842:773–776Google Scholar
  29. Wlordarchak N, Kushad M, Elgargoti A (2009) Influence of leaf removal before veraison on sugars and organic acids in three wine grape cultivars, Transactions of the Illinois State Horticultural Society 143:80–86Google Scholar
  30. Yang H-Y, Li L-L, Dai H-Y, Zhang Z-H (2009) Study on the molecular variation and PCR detection of strawberry mottle virus. Agr Sci China 8(10):1203–1209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fánor Casierra-Posada
    • 1
    Email author
  • I. D. Torres
    • 1
  • M. M. Blanke
    • 2
  1. 1.UPTC, Faculty of Agricultural SciencesResearch Group in Plant Ecophysiology, Pedagogical and Technological University of ColombiaTunjaColombia
  2. 2.INRES- Horticultural ScienceUniversity of BonnBonnGermany

Personalised recommendations