Gesunde Pflanzen

, Volume 64, Issue 4, pp 175–182 | Cite as

Ameliorative Effects of Brassinosteroids on Growth and Productivity of Snap Beans Grown Under High Temperature

  • Abdelmohsin Mahmoud El-Bassiony
  • Abdalla Abdel Ghoname
  • M. E. El-Awadi
  • Z. F. Fawzy
  • N. Gruda
Original Article


The effect of brassinosteroids (BRs) was tested, in order to assess the possibility of alleviation of the adverse effects of high temperature stress on snap bean plants during delayed summer cultivation. Therefore, two field experiments were carried out in successive seasons, 2010 and 2011, with two bean cultivars ‘Paulesta’ and ‘Oxzira’, spraying with BRs of the following concentrations 0 (control), 25, 50 and 100 ppm. Plant growth, yield and pods quality of beans were studied. Spraying bean plants with BRs at a concentration of 25 and 50 ppm increased vegetative growth, total yield and quality of pods with no significant difference between both treatments. Using BRs at 25 ppm increased the total free amino acids (FAA) in leaves and total phenolic acids in the pod in comparison to control-treatment. ‘Oxzira’ cultivar resulted in the highest number of leaves, number of branches, dry weight of whole plant, total yield, total FAA in leaves and total phenolic acids in pod. Whereas, ‘Paulesta’ cultivar had the highest of plant length and total FAA in pods.


hormone treatment pod quality exogenously brassinosteroids heat tolerance heat stress 

Die positive Wirkung von Brassinosteroiden auf das Wachstum und die Produktivität von grünen Bohnen, gewachsen unter hohen Temperaturen


In der vorliegenden Arbeit wurde untersucht, inwiefern Brassinosteroide (BRs) den oxidativen Stress durch hohe Temperatureinwirkungen bei Brechbohnen während eines verzögerten Sommeranbaus verringern. Dazu wurden zwei Feldversuche mit den zwei Bohnensorten ‘Paulesta’ und ‘Oxzira’ durchgeführt. Besprüht wurden die Pflanzen mit BRs in folgenden Konzentrationen 0 (Kontrolle), 25, 50 und 100 ppm in den Jahren 2010 und 2011. Pflanzenwachstum, Ertrag und Qualität der Brechbohnen wurden untersucht. Das Besprühen der Bohnenpflanzen mit BRs bei einer Konzentration von 25 und 50 ppm erhöhte das vegetative Wachstum, den Gesamtertrag und die Qualität der Hülsen. Es konnte kein signifikanter Unterschied zwischen den beiden Behandlungen festgestellt werden. Bei der Verwendung von einer Konzentration von 25 ppm erhöhten sich – im Vergleich zur Kontrolle – die gesamten freien Aminosäuren (FAA) in den Blättern sowie der Phenolsäuregehalt in den Hülsen. Die Sorte ‘Oxzira’ zeigte die höchste Anzahl an Blättern und Verzweigungen, Trockengewicht, Gesamtertrag, FAA in Blättern und Phenolsäure in den Hülsen. Die Sorte ‘Paulesta’ hatte dagegen die größte Pflanzenhöhe und FAA in den Hülsen.


Hormonbehandlung Hülsenqualität exogene Brassinosteroiden Hitzetoleranz Hitzestress 


  1. Ali B, Hayat S, Hasan SA, Ahmad A (2006) Effect of root applied 28-homobrassinolide on the performance of Lycopersicon eculentum L. Sci Hortic 110:267–273CrossRefGoogle Scholar
  2. Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role of BRs in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiate L. Wilczek). Environ Exp Bot 62:153–159CrossRefGoogle Scholar
  3. AOAC (1990) Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Washington DCGoogle Scholar
  4. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to envi-ronmental stresses. Plant Physiol Biochem 47:1–8PubMedCrossRefGoogle Scholar
  5. Behnamnia M, Kalantari KM, Rezanejad F (2009) Exogenous application of brassinos-teroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General Appl Plant Physiol 35(1–2):22–34Google Scholar
  6. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451PubMedCrossRefGoogle Scholar
  7. Danial HD, George CM (1972) Peach seed dormancy in relation to endogenous inhibitors and applied growth substances. J Am Soc Hort Sci 17:651Google Scholar
  8. Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment of 24-pibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342PubMedCrossRefGoogle Scholar
  9. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29:681–691Google Scholar
  10. Fariduddin Q, Hasan SA, Ali B, Hayat S, Ahmad A (2008) Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol 32:17–21Google Scholar
  11. Gomez KA, Gomez AA (1984) Statistical procedures for agriculture research, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  12. Grove MD, Spencer FG, Rohwededer WK, Mandava NB, Worley JF, Warthen JD Jr, Steffens GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth promoting steroid isolated from Brassica napus pollen. Nature 281:216–217CrossRefGoogle Scholar
  13. Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66PubMedCrossRefGoogle Scholar
  14. Hayat S, Ahmad A, Hussain A, Mobin M (2001) Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide. Acta Physiol Plant 23:27–30CrossRefGoogle Scholar
  15. Howell WM, Keller GE 3rd, Kirkpatrick JD, Jenkins RL (2007) Effects of the plant steroidal hormone, 24-epibrassinolide, on the mitotic index and growth of onion (Allium cepa) root tips. Genet Mol Res 6:50–58PubMedGoogle Scholar
  16. Ibrahim SK, Shalaby MAF, El-Said Zaki M, Abou-Sedera FA, Abd Allah MSA (2012) Alleviation of high temperature stress on snap bean (Phaseolus vulgaris L.) by benzyl adenine and putrescine. J Appl Sci Res 8(1):192–199Google Scholar
  17. Jian YP, Cheng F, Zhou YH, Xia XJ, Shi K, Yu JQ (2012) Interactive effects of CO2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environ Exp Bot 75:98–106CrossRefGoogle Scholar
  18. Kang YY, Guo SR (2011) Role of brassinosteroids on horticultural crops. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp. 269–288CrossRefGoogle Scholar
  19. Karas AN, Singer SM, Sawan OM, Abou Hadid AF (1999) Water consumption of bean plants (Phaseolus vulgaris L.) as affected by sowing dates. Egypt J Hort 26:19–34Google Scholar
  20. Konsens I, Ofir M, Kigel J (1991) The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann Bot 67:391–399Google Scholar
  21. Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22(4):279–289CrossRefGoogle Scholar
  22. Kulaeva ON, Burkhanova EA, Fedina AB, Khokhlova VA, Bokebayeva GA, Vorbrodt HM, Adam G (1991) Effect of brassinosteroids on protein synthesis and plant cell ultrastructure under stress conditions. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity and applications, ACS symposium, Ser. 474:141–155. American Chemical Society, Washington, DCGoogle Scholar
  23. Mai YY, Lin JM, Zeng XL, Pan RJ (1989) Effect of homobrassinolide of the activity of nitrate reductase in rice seedlings. Plant Physiol Commun 2:50–52Google Scholar
  24. Masaya P, White JW (1991) Adaptation to photoperiod and temperature. In: Van Schoonhoven A, Voysest O (eds) Common beans-research for crop improvement. CIAT, Cali, pp. 445–500Google Scholar
  25. Mitchell JW, Mandava NB, Worley JF, Plimmer JR, Smith MV (1970) Brassins: a new family of plant hormones from rape pollen. Nature 225:1065–1066PubMedCrossRefGoogle Scholar
  26. Monterroso VA, Wien HC (1990) Flower and pod abscission due to heat stress in beans. J Am Soc Hort Sci 115:631–634Google Scholar
  27. Nomura T, Nakayama M, Reid JB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31–37PubMedGoogle Scholar
  28. Ogweno J, Xing Song, Kai Shi, Hu Wen, Wei Mao, Yan Zhou, Yu Jing, Salvador No-gués (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum L. J Plant Growth Regul 27:49–57CrossRefGoogle Scholar
  29. Omae H, Kumar A, Kashiwaba K, Shono M (2006) Influence of high temperature on morphological characters, biomass allocation, and yield components in snap bean (Phaseolus vulgaris L.). Plant Product Sci 9(3):200–205CrossRefGoogle Scholar
  30. Pinol R, Simon E (2009) Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. J Plant Growth Regul 28:97–105CrossRefGoogle Scholar
  31. Plummer D (1978) An introduction to practical biochemistry, 2nd edn. McGraw-Hall Mook, London, pp 144Google Scholar
  32. Prasad PVV, Boote KJ, Allen LH Jr (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol 8:710–721CrossRefGoogle Scholar
  33. Saini JP, Negi SC (1998) Effect of sowing on growth and yield of french bean (Phaseolus vulgaris L.) under dry temperate condition. Indian J Agron 43:110–113Google Scholar
  34. Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid, on thermotolerance of tomato. Plant Growth Regul 47:111–119CrossRefGoogle Scholar
  35. Torres W, Nunez M (1997) The application of biobras-6 and its effect on potato (Solanum tuberosum L.) yields. Cultivos Trop 18:8–10Google Scholar
  36. Wilen RW, Sacco M, Gusta LV Krishna P (1995) Effects of 24- epibrassinolide on freezing and thermotolerance of bromgrass (Bromus inermis) cell cultures. Plant Physiol 95:195–202CrossRefGoogle Scholar
  37. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814PubMedCrossRefGoogle Scholar
  38. Zhu BC, Su J, Cham MC, Verma DPS, Fan YL, Wu R (1998) Overexpression of pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water stress and salt stress in transgenic rice. Plant Sci 139:41–48CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abdelmohsin Mahmoud El-Bassiony
    • 1
  • Abdalla Abdel Ghoname
    • 1
  • M. E. El-Awadi
    • 2
  • Z. F. Fawzy
    • 1
  • N. Gruda
    • 3
  1. 1.Vegetable Research DepartmentNational Research CenterCairoEgypt
  2. 2.Botany DepartmentNational Research CentreCairoEgypt
  3. 3.Faculty of AgricultureUniversity of BonnBonnGermany

Personalised recommendations