Advertisement

Gesunde Pflanzen

, Volume 64, Issue 2, pp 79–87 | Cite as

Bodennahes Ozon – ein Problem für Kulturpflanzen und Ernährungssicherheit?

  • Hans-Joachim Weigel
  • Jürgen Bender
Übersichtsartikel

Zusammenfassung

Ozon ist ein natürlicher Bestandteil der bodennahen Atmosphäre. Bei erhöhten Konzentrationen, die sich vorwiegend aus anthropogenen Stickoxiden und Kohlenwasserstoffen unter dem Einfluss von Sonnenlicht bilden, ist das Gas stark phytotoxisch und kann die Vegetation insgesamt, in besonderer Weise jedoch auch die Leistungen landwirtschaftlicher Kulturpflanzen, schädigen. In Mitteleuropa nahmen im Laufe der letzten zwei Jahrzehnte Ozonbelastungen durch kurzzeitige Spitzenkonzentrationen zwar ab, jedoch ist gleichzeitig eine stetige Zunahme der Ozonhintergrundkonzentrationen zu beobachten. In vielen Teilen der Erde und insbesondere in den Schwellenländern mit starkem Bevölkerungs- bzw. Industriewachstum und damit hohem Bedarf an pflanzlichen Nahrungsmitteln und Rohstoffen nehmen beide Formen der Ozonbelastung jedoch zu. Im Rahmen des globalen Klimawandels soll sich die Ozonbelastung generell verschärfen. Ozon gelangt vorwiegend über die Spaltöffnungen in die Pflanzen und löst oberhalb einer kritischen Schwellendosis Membran- und Zellschäden aus, die zu einer Photosynthesedepression und in Folge zu verminderter Wachstumsleistung führen. Diese Wirkungen können begleitet sein von sichtbaren Blattschäden und von Qualitätsbeeinträchtigen der verwertbaren Produkte. Beide Effekte verursachen ökonomische Schäden. Zu den besonders empfindlichen Kulturpflanzenarten zählen die für die Ernährungsversorgung wichtigen Arten Weizen und Sojabohne, während z. B. Kartoffel, Mais und Zuckerrübe weniger ozonempfindlich sein sollen. Neben seinen Wirkungen auf die Pflanze über die direkte Stoffwechselbeeinträchtigung kann Ozon die Empfindlichkeit von Pflanzen gegenüber anderen biotischen und abiotischen Stressoren beeinflussen. Der vorliegende Beitrag gibt einen kurzen Überblick über die Belastungssituation mit Ozon auf globaler und nationaler Ebene und stellt neuere Befunde zur Abschätzung der Schadwirkungen auf die landwirtschaftliche Pflanzenproduktion vor.

Schlüsselwörter

Ozon Phytotoxizität Kulturpflanzen Ertrag Qualität Klimawandel 

Ground-Level Ozone—A Risk for Crops and Food Security?

Abstract

Tropospheric (ground-level) ozone is considered as one of the most important air pollutants affecting vegetation. It is a secondary pollutant formed from chemical reactions of primary pollutants (nitrogen oxides and volatile organic compounds) under the action of sunlight. While there is a clear trend of decreasing ozone peak values („photosmog episodes“) in Europe, predictive models indicate that background ozone concentrations will continue to increase. Moreover, ozone concentrations are increasing rapidly in emerging economies worldwide. The widespread distribution of ozone already presents a risk to crop growth and health in many regions of the world. Ozone reduces plant productivity by entering leaves through the stomata, causing oxidative stress and decreasing photosynthesis, plant growth and biomass accumulation. Ozone causes visible injury symptoms to foliage, and decreases crop yield and yield quality, any or all of which can result in significant economic losses. However, there is a wide inter- as well as intraspecific variation in sensitivity to ozone. Important food crops such as wheat and soybean are highly sensitive to ozone, while potato, maize or sugar beet are considered to be less sensitive. Modification of the crops’ sensitivity by interactions of ozone with biotic and abiotic factors or by secondary effects of ozone are well documented but are poorly addressed in current risk assessments.

Keywords

Ozone Phytotoxicity Crops Yield Yield quality Climate change 

Literatur

  1. Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19PubMedCrossRefGoogle Scholar
  2. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964CrossRefGoogle Scholar
  3. Avnery S, Mauzerall DL, Liu J, Horowitz W (2011a) Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos Environ 45:2284–2296CrossRefGoogle Scholar
  4. Avnery S, Mauzerall DL, Liu J, Horowitz W (2011b) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309CrossRefGoogle Scholar
  5. Barnes JD, Bender J, Lyons T, Borland A (1999) Natural and man-made selection for air pollution resistance. J Exp Bot 50:1423–1435Google Scholar
  6. Bender J, Weigel HJ (2003) Ozone stress impacts on plant life. In: Ambasht RS, Ambasht NK (Hrsg) Modern trends in applied terrestrial ecology. Kluwer, New York, S 165–182Google Scholar
  7. Bender J, Weigel HJ (2011) Changes in atmospheric chemistry and crop health: A review. Agron Sustain Dev 31:81–89CrossRefGoogle Scholar
  8. Bender J, Bramm A, Weigel HJ (1999) On the importance of cultivar, growth duration, sink capacity, and yield quality for the sensitivity of sugar beet to ozone. Environ Document 115:215–218Google Scholar
  9. Bender J, Bergmann E, Weigel HJ (2006a) Responses of biomass production and reproductive development to ozone exposure differ between European wild plant species. Water Air Soil Pollut 176:253–267CrossRefGoogle Scholar
  10. Bender J, Muntifering RB, Lin JC, Weigel HJ (2006b) Growth and nutritive quality of Poa pratensis as influenced by ozone and competition. Environ Pollut 142:109–115CrossRefGoogle Scholar
  11. Betzelberger AM, Gillespie KM, McGrath JM et al (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581PubMedGoogle Scholar
  12. Biswas DK, Xu J, Li YK et al (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Change Biol 14:46–59Google Scholar
  13. Booker F, Muntifering R, McGrath M et al (2009) The ozone component of global change: Potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integrative Plant Biol 51:337–351CrossRefGoogle Scholar
  14. Dentener F, Stevenson D, Cofala J et al (2005) The impact of air pollutants and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2020. Atmos Chem Phys 5:1731–1755CrossRefGoogle Scholar
  15. De Temmerman L, Legrand G, Vandermeiren K (2007) Effects of ozone on sugar beet grown in open-top chambers. Eur J Agron 26:1–9CrossRefGoogle Scholar
  16. Emberson LD, Büker P, Ashmore MR et al (2009) A comparison of North American and 24 Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953CrossRefGoogle Scholar
  17. Feng ZZ, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519CrossRefGoogle Scholar
  18. Feng Z, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biol 14:2696–2708Google Scholar
  19. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011CrossRefGoogle Scholar
  20. Flückiger W, Braun S, Hiltbrunner E (2002) Effects of air pollutants on biotic stress. In: Bell JNB, Treshow M (Hrsg) Air pollution and plant life. Wiley, Chichester, S 379–406Google Scholar
  21. Frei M, Tanaka JPC, Wissuwa M (2009) Genotypic variation in tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J Exp Bot 59:3741–3752CrossRefGoogle Scholar
  22. Fuhrer J (2009) Ozone risk for crops and pastures in present and future climates. Naturwiss 96:173–194PubMedCrossRefGoogle Scholar
  23. Gonzalez-Fernandez I, Bass D, Muntifering R et al (2008) Impacts of ozone pollution on productivity and forage quality of grass/clover swards. Atmos Environ 42:8755–8769CrossRefGoogle Scholar
  24. Gregory PJ, George TS (2011) Feeding nine billion: the challenge to sustainable crop production. J Exp Bot 62:5233–5239PubMedCrossRefGoogle Scholar
  25. Grünhage L, Bender J, Jäger HJ, Matyssek R, Weigel HJ (2011) Beurteilungswerte für Ozon zum Schutz der Vegetation. Gefahrstoffe – Reinh Luft 71:79–89Google Scholar
  26. Hayes F, Mills G, Harmens H, Norris D (2007) Evidence of widespread ozone damage to vegetation in Europe (1990–2006). Centre for Ecology and Hydrology, Bangor, UKGoogle Scholar
  27. Heagle AS (1989) Ozone and crop yield. Ann Rev Phytopath 27:397–423CrossRefGoogle Scholar
  28. Heck WW, Taylor GC, Tingey DT (1988) Assessment of crop loss from air pollution. Elsevier, LondonCrossRefGoogle Scholar
  29. Holland M, Kinghorn S, Emberson L et al (2006) Development of a framework for probabilistic assessment of the economic losses caused by ozone damage to crops in Europe. UNECE ICP Vegetation. Contract Report EPG 1/3/205. CEH Project No: C02309NEWGoogle Scholar
  30. IPCC (Intergovernmental Panel on Climate Change (2007) The 4th Assessment Report. Working Group 1 Report: The physical scientific basis. www.ipcc.ch. Zugegriffen: 15. März 2012Google Scholar
  31. Iriti M, Di Maro A, Bernasconi S et al (2009) Nutritional traits of bean (Phaseolus vulgaris) seeds from plants chronically exposed to ozone pollution. J Agric Food Chem 57:201–208PubMedCrossRefGoogle Scholar
  32. Kostka-Rick R, Bender J, Weigel HJ, Gündel L (2002) Sichtbare Ozonschäden bei Gemüsepflanzen. Schriftenr Landesanstalt Pflanzenbau Pflanzensch Nr. 12, MainzGoogle Scholar
  33. Manning WJ, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3) and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245PubMedCrossRefGoogle Scholar
  34. Matyssek R, Agerer R, Ernst D et al (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedCrossRefGoogle Scholar
  35. Mills G, Buse A, Gimeno B et al (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643CrossRefGoogle Scholar
  36. Mills G, Pleijel H, Braun S et al (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45:5064–5068CrossRefGoogle Scholar
  37. Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343PubMedCrossRefGoogle Scholar
  38. Muntifering RB, Manning WJ, Lin JC et al (2006) Short-term exposure to ozone altered the relative feed value of an alfalfa cultivar. Environ Pollut 140:1–3PubMedCrossRefGoogle Scholar
  39. Ollerenshaw JH, Lyons T, Barnes JD (1999) Impacts of ozone on the growth and yield of field-grown winter oilseed rape. Environ Pollut 104:53–59CrossRefGoogle Scholar
  40. Pang J, Kobayashi K, Zhu JG (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosys Environ 132:203–211CrossRefGoogle Scholar
  41. Picchi V, Iritia M, Quaroni S et al (2010) Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po valley (Northern Italy). Agric Ecosys Environ 135:310–317CrossRefGoogle Scholar
  42. Piiki K, De Temmerman L, Ojanpera K, Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28:245–254CrossRefGoogle Scholar
  43. Pleijel H (2011) Reduced ozone by air filtration consistently improved grain yield in wheat. Environ Pollut 159:897–902PubMedCrossRefGoogle Scholar
  44. Prather M, Gauss M, Berntsen T et al (2003) Fresh air in the 21st century? Geophys Res Lett 30:1100–1104CrossRefGoogle Scholar
  45. Sandermann H (1996) Ozone and plant health. Ann Rev Phytopath 34:347–366CrossRefGoogle Scholar
  46. Sawada H, Kohno Y (2009) Differential ozone sensitivity of rice cultivars as indicated by visible injury and grain yield. Plant Biol 11:70–75PubMedCrossRefGoogle Scholar
  47. The Royal Society (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. Science policy, Report 15/08. The Royal Society, LondonGoogle Scholar
  48. USEPA (US Environmental Protection Agency) (2006) Air quality criteria for ozone and related photochemical oxidants. Report no. EPA/600/R-05/004aF-cF, US Environmental Protection Agency, Washington, DCGoogle Scholar
  49. Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442CrossRefGoogle Scholar
  50. Volk M, Bungener P, Montani M, Contat F, Fuhrer J (2006) Grassland yield declined by a quarter in five years of free-air ozone fumigation. Glob Change Biol 12:74–83CrossRefGoogle Scholar
  51. Vorne V, De Temmerman L, Bindi M et al (2002) Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multi-site experiment ‚CHIP-project‘. Eur J Agron 17:369–381CrossRefGoogle Scholar
  52. Wang Y, Jacob DJ (1998) Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J Geophys Res 103:123–131Google Scholar
  53. Wilkinson S, Mills G, Illidge R, Davies WJ (2011) How is ozone pollution reducing our food supply? J Exp Bot 63:527–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen-InstitutInstitut für BiodiversitätBraunschweigDeutschland

Personalised recommendations