Advertisement

Gesunde Pflanzen

, 61:123 | Cite as

Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions

  • W. A. El-Tohamy
  • H. M. El-Abagy
  • S. D. Abou-Hussein
  • N. Gruda
Original Paper

Abstract

The effect of different nitrogen (N) levels on growth and productivity of Cape gooseberry, cultivated in new reclaimed lands (sandy soil) at Nubaria region in Egypt, was investigated. Nitrogen levels were applied at rates of 50, 100, 150 and 200 kg N ha−1 as ammonium sulfate. The amount of  N for each treatment was divided into five applications (after transplanting, seven days later, at the beginning of flowering, during fruit set and after the first harvest). Several growth parameters and yield were recorded in addition to nitrogen content in leaves. The results revealed that Cape gooseberry plants responded positively to nitrogen levels in sandy soils. Yield, number of fruits, and diameter of fruits increased significantly by increasing the nitrogen level up to 200 kg N ha−1. Moreover, plant height, number of leaves, N-content in leaves and N-uptake shows a positive reaction to increased nitrogen supply. The quantitative effects of nitrogen on Cape gooseberry plants and the possible explanations of plant responses are discussed.

Keywords

Egypt N-content N-uptake Plant growth Yield 

Die Reaktion der Kapstachelbeere (Physalis peruviana L.) auf Stickstoffdüngung unter Sandbodenbedingungen

Zusammenfassung

Es wurde die Wirkung verschiedener Stickstoffstufen (N) auf Wachstum und Ertrag von Kapstachelbeeren, angebaut in den neuen Landgebieten (Sandböden) bei Nubaria, eine Region in Ägypten, untersucht. Als Stickstoffdüngung wurde Ammoniumsulfat in Stufen von 50, 100, 150 und 200 kg N ha−1 verwendet. Die Höhe der gesamt N-Menge wurde zeitlich auf fünf Gaben verteilt (nach dem Pflanzen, sieben Tage später, zu Beginn der Blüte, während der Fruchtbildung, und nach der ersten Ernte). Zusätzlich zu dem Stickstoffgehalt in den Blättern wurden unterschiedliche Wachstumsparameter und der Ertrag der Kapstachelbeeren erfasst. Die Ergebnisse zeigten, dass die Kapstachelbeerpflanzen in sandigen Böden positiv auf Stickstoff reagierten. Bei einer Erhöhung der Stickstoffmenge bis zu einer Stufe von 200 kg N ha−1 wurde eine signifikante Steigerung des Ertrags, der Anzahl der Früchte und deren Durchmesser ermittelt. Darüber hinaus zeigten die Pflanzenhöhe, die Anzahl der Blätter, der N-Gehalt der Blätter und die N-Aufnahme eine positive Reaktion auf eine erhöhte Stickstoffversorgung. Die quantitativen Auswirkungen von Stickstoff auf die Kapstachelbeere und die mögliche Erklärungen der pflanzlichen Reaktionen werden diskutiert.

Schlüsselwörter

Ägypten N-Gehalt N-Aufnahme Pflanzenwachstum Ertrag 

References

  1. Alva AK (2006) Sustainable nutrient management in sandy soils – fate and transport of nutrients from animal manure versus inorganic sources. J  Sustain Agri 28(4):139–155CrossRefGoogle Scholar
  2. Badawy AS, Ahmed MM (2006) Effect of balanced fertilization on potato growth, yield and quality in sandy calcareous soil. A J Agril Sci 37(1):105–121Google Scholar
  3. Brar JS, Sharma SP, Sekhon KS, Sidhu BS (2008) Effect of various levels of irrigation, nitrogen and farm yard manure on bulb yield of onion and its attributing characters in coarse textured soils. Environ Ecol 26(4):1545–1548Google Scholar
  4. Castro-Brindis R, Sanchez-Garcia P, Pena-Lomeli A, Alcantar-Gonzalez G, Baca-Castillo GA, Lopez-Romero RM (2000) Nitrates in the cellular extract of petioles and stem of husk tomato (Physalis ixocarpa Brot.) and their relationship with yield. Revista Chapingo Serie Horticult 6(1):33–38Google Scholar
  5. Castro-Brindis R, Galvis-Spinola A, Sanchez-Garcia P, Pena-Lomeli A, Sandoval-Villa M, Alcantar-Gonzalez G (2004) Nitrogen demand in husk tomato (Physalis ixocarpa Brot.). Revista Chapingo Serie Horticultura 10(2):147–152Google Scholar
  6. Chia CL, Nishina MS, Evans DO (1987) Poha. Hawaii Cooperative Extension Service, Commodity fact sheet POHA-3(A)Google Scholar
  7. Crene M (1990) Different kinds and levels of nitrogen in tomatoes. Acta Horticult 27(7):179–182Google Scholar
  8. Drost D, Koenig R (2001) Improving onion productivity and  N use efficiency with a polymer coated nitrogen source. Western Management Conference, Salt Lake City, UT, March 8–9Google Scholar
  9. El-Tohamy WA, Schnitzler WH, El-Behairy U, Singer SM (1999) Effect of long-term drought stress on growth and yield of bean plants (Phaseolus vulgaris  L.). J  Appl Bot 73:173–177Google Scholar
  10. FAO (1980) Soils and plant analysis. Soils Bull 38(2):250Google Scholar
  11. Guertal A, Kemble M (1998) Responses of field-grown tomatoes to nitrogen sources. Hort Technol 8(3):386–391Google Scholar
  12. Khalil A (2008) Simulation of nitrogen distribution in soil with drip irrigation system. J  Appl Sci 8(18):3157–3165CrossRefGoogle Scholar
  13. Khalil A, Singh DK, Singh AK, Manoj K (2007) Modelling of nitrogen leaching from experimental onion field under drip fertigation. Agri Water Manag 89(1/2):15–28Google Scholar
  14. Mahmoud MR (2006) Effect of some organic and inorganic nitrogen fertilizers on onion plants grown on a sandy calcareous soil. Assiut J Agri Sci 37(1):147–159Google Scholar
  15. Mmolawa K, Or D (2000) Water and solute dynamics under a drip-irrigated crop: experiments and analytical model. Trans ASAE 43(6):1597–1608Google Scholar
  16. Podsiado C, Friesdich S, Jaroszewska A, and Rumasz ER (2007) Effects of drip irrigation and mineral fertilization on yield and anatomy of dwarf bean. Acta Horticult 729:379–383Google Scholar
  17. Porto ML, Alves JC, Souza AP, Araujo RC, Arruda JA (2008) Nitrate production and accumulation in lettuce as affected by mineral Nitrogen supply and organic fertilization. Horticult Brasil 26(2):227–230Google Scholar
  18. Rajput TBS, Patel N (2006) Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric Water Manag 79:293–311CrossRefGoogle Scholar
  19. Ramos-Lara C, Alcantar-Gonzalez G, Galvis-Spinola A, Pena-Lomeli A, Martinez-Garza A (2002) Nitrogen use efficiency in husk tomato under fertigation. Terra 20(4):465–469Google Scholar
  20. Simonne EH, Hochmuth GJ (2005) Soil and Fertilizer Management for Vegetable Production in Florida. In: Olson SM, Simonne EH (eds) Vegetable Production Handbook for Florida 2004–2005. University of Florida, IFAS Extention, and Vance Publishing, pp 3–16Google Scholar
  21. Snedecor GW, Cochran WG (1967) Statistical methods, 6nd edn. Iowa State Univ. Press, Ames, Iowa, USAGoogle Scholar
  22. Zhang TQ, Chin C, Bruulsema T (2006) Fertigation boosts optimum nitrogen for tomatoes and peppers. Better Crops Plant Food 90(4):8–10Google Scholar
  23. Zotarelli L, Scolberg JM, Dukes MD, Munoz RC (2007) Monitoring of nitrate leaching in sandy soils: comparison of three methods. J  Environ Qual 36(4):953–962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • W. A. El-Tohamy
    • 1
  • H. M. El-Abagy
    • 1
  • S. D. Abou-Hussein
    • 1
  • N. Gruda
    • 2
  1. 1.Vegetable Research DepartmentNational Research CenterCairoEgypt
  2. 2.Institute of Horticultural SciencesHumboldt University of BerlinBerlinGermany

Personalised recommendations