Advertisement

Gesunde Pflanzen

, Volume 57, Issue 1, pp 6–17 | Cite as

Gesunde Pflanzen unter zukünftigem Klima

Wie beeinflusst der Klimawandel die Pflanzenproduktion?
  • H. J. Weigel
Originalbeitrag

Zusammenfassung

Die vorausgesagten Veränderungen mittlerer Klimawerte (höhere Temperaturen, Verschiebungen von Niederschlagsverhältnissen, Zunahme der atmosphärischen CO2-Konzentration) sowie Änderungen in Häufigkeit, Dauer und Stärke von Klimaextremen (Frost-, Hitze- und Trockenperioden, Starkniederschläge, Hagel, Stürme, Hochwasser, Sturmfluten etc.) werden Auswirkungen auf landwirtschaftliche Kulturpflanzen und auf Agrarökosysteme sowie auf die Agrarproduktion insgesamt haben. Voraussagen zu den regional bzw. lokal konkret zu erwartenden Klimaänderungen sind unscharf. Für Europa wird z. B. eine relativ stärkere Zunahme der Durchschnittstemperaturen in den nördlichen (2,5°–4,5°C) im Vergleich zu den südlicheren Breiten (1,5°–4,5°C) angenommen. Vorhersagen zur regionalen Niederschlagsentwicklung sind ebenfalls unsicher. Trockenheitsprobleme sollen insbesondere in den Mittelmeerländern zunehmen. Sollte Wassermangel auftreten, wird dies die am stärksten wachstumshemmende Klimawirkung sein. Höhere Temperaturen z. B. beschleunigen die Entwicklung bei Getreide, was zu sinkenden Kornerträgen führen würde. Erhöhte CO2-Konzentrationen in der Atmosphäre führen dagegen bei den meisten Kulturpflanzen zu einer Stimulation der Photosynthese und des Pflanzenwachstums (sog. „CO2-Düngeeffekt“) sowie zu einer Reduktion der Transpiration. Daraus resultiert eine erhöhte Wassernutzungseffizienz. In Experimenten sind unter idealisierten Wachstumsbedingungen durch eine CO2-Erhöhung auf 550–700 ppm Biomasse- bzw. Ertragszuwächse von 10%–35% erzielt worden. Inwieweit sich negative und positive Klimawirkungen gegenseitig beeinflussen, ist von entscheidender Bedeutung für die Vorhersage zukünftiger Erntemengen. Insbesondere die Quantifizierung des CO2-Düngeeffektes ist eine wesentliche Voraussetzung dafür, modellgestützte Ertragsprognosen zu verbessern, da die physiologische CO2-Wirkung die Aussagen der Klimamodelle erheblich beeinflusst. Im vorliegenden Beitrag werden mögliche Auswirkungen von Temperaturänderungen und erhöhter CO2-Konzentrationen auf das Pflanzenwachstum bzw. die Pflanzenproduktion sowie auf die Qualität von Pflanzen kurz dargestellt. Zusätzlich werden Anpassungsmöglichkeiten erwähnt und die Interaktionen dieser Klimaparameter untereinander und mögliche Wechselwirkungen mit anderen Wachstumsfaktoren (Pflanzenkrankheiten, Luftschadstoffe) beschrieben.

Schlüsselwörter

Klimaveränderung Agrarproduktion CO2-Düngeeffekt Wachstumsfaktoren Ertragsprognosen Wassernutzungseffizienz 

Healthy plants in the future: how does climate change affect crop production?

Abstract

Predicted changes in average values of global climate variables (increased temperatures, altered precipitation patterns, increased concentrations of atmospheric CO2) and changes in the frequency, duration, and degree of extremes (frost, heat, drought, hail, storms, floods, etc.) will affect agricultural crops, agroecosystems, and agricultural productivity. Although forecasts of regional climate changes are still imprecise, mean temperature increases in Europe are expected to be greater in the north (2.5–4.5°C) than in the south (1.5–4.5°C). Regional forecasts for precipitation changes are also very far from precise; however, problems with drought are expected to increase, especially in Mediterranean countries. Overall, shortage of water will be the predominant factor affecting plant growth. As higher temperatures are known to enhance plant development and especially the grain-filling duration of cereals, grain yield losses are possible in a warmer climate. On the other hand, elevated atmospheric CO2 concentrations are known to stimulate photosynthesis and enhance growth and yield (“CO2 fertilization”); concomitantly, leaf transpiration is reduced, resulting in improved water use efficiency. Total biomass and yield were enhanced by 20–30% in experiments with elevated CO2 exposure (550–700 ppm) under more or less ideal growth conditions. Elucidating the interactions between positive and negative effects of climate change is of crucial importance for any prediction of future crop yields. The present paper is a brief summary mainly of the potential effects of elevated temperatures and atmospheric CO2 on crop growth, quality, and yield. Also, adaptation measures, possible interactive effects of different climate variables, and interactions of climate change components with other growth variables (pathogens, air pollutants) are briefly described.

Keywords

Climate change Agricultural production CO2 fertilization effect Growth factors Harvest prognoses Water use efficiency 

Literatur

  1. Adams RA (1999) Economic effects of climate change on US agriculture. In: Mendelsohn R, Neuman JE (eds) The Impact of climate change on the United States economy. Cambridge Univ Press, Cambridge (UK) New York MelbourneGoogle Scholar
  2. Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73: 1–34CrossRefGoogle Scholar
  3. Batts G R, Morison JIL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over several seasons. Eur J Agron 7:43–52CrossRefGoogle Scholar
  4. Bender J, Hertstein U, Black CR (1999) Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis of ESPACE wheat results. Eur J Agron 10:185–196CrossRefGoogle Scholar
  5. Bindi M, Olesen JE (2000) Agriculture. In: Parry M (ed) Assessment of potential effects and adaptations for climate change in Europe. Jackson Environment Institute, Univ East Anglia, UK pp 155–176Google Scholar
  6. Bunce JA, Ziska LH (2000) Crop ecosystem responses to climatic change: crop/weed interactions. In: Reddy KR, Hodges HF (eds) Climate Change and Global Crop Productivity. CABI Publ, Wallingford, UK, pp 333–352Google Scholar
  7. Chakraborty SM, Pangga IB (2003) Plant diseases and climate change. In: Holmes A, Gillings M (eds) Plant Microbiology. Bios Sci Publ, Oxford, UKGoogle Scholar
  8. Chameides WL, Kasibhata PS, Yienger J, Levy H (1994) Growth of continental-scale metro-agroplexes, regional ozone pollution and world food supply. Science 264:74–77Google Scholar
  9. Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Ann Rev Phytopathol 37: 399–426Google Scholar
  10. Conroy JP, Seneweera S, Basra AS, Rogers G, Nissen-Wooller B (1994) Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Austr J Plant Physiol 21:741–758Google Scholar
  11. Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissue. Global Change Biol 4:43–54CrossRefGoogle Scholar
  12. Dämmgen U, Weigel HJ (1998) Trends in atmospheric composition (nutrients and pollutants) and their interaction with agroecosystems. In: Sustainable agriculture for food, energy and industry. James & James Sci Publ, pp 85–93Google Scholar
  13. Darwin R, Tsigas M, Lewandrowski J, Raneses A (1999) Climate change, world agriculture and land use. In: Frisvold G, Kohn B (eds) Global environmental change and agriculture:assessing the impacts. Edward Elgar PublGoogle Scholar
  14. Demmers-Derks HH, Mitchell RAC, Mitchell VJ, Lawlor DW (1998) Response of sugar beet (Beta vulgaris L.) yield and biochemical composition to elevated CO2 and temperature at two nitrogen applications. Plant Cell Environ 21:829–836Google Scholar
  15. Drake BG, GonzalezMeler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Ann Rev Plant Physiol Plant Mol Biol 48:609–639Google Scholar
  16. Easterling DR (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Met Soc 81:417–245CrossRefGoogle Scholar
  17. Enders G (1999) BayFORKLIM—Klimaänderungen in Bayern und ihre Auswirkungen. Abschlussbericht des Bayerischen Klimaforschungsverbundes, Nov 1999 http://www.bayforklim.uni-muenchen.de
  18. Evans LT (ed) (1993) Crop evolution, Adapation and Yield. Cambridge Univ PressGoogle Scholar
  19. Fangmeier A, Jäger HJ (2001) Wirkungen erhöhter CO2-Konzentrationen. In: Guderian R (Hrsg) Handbuch der Umweltveränderungen und Ökotoxikologie, Bd. 2A. Terrestrische Ökosysteme. Springer, Berlin Heidelberg New York, S 382–433Google Scholar
  20. Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agricult Ecosys Environ 97:1–20Google Scholar
  21. Fuhrer J, Booker F (2003) Ecological issues of ozone: agricultural issues. Environ Int 29:141–154Google Scholar
  22. Gerstengrabe F-W, Badeck F, Hattermann F et al. (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und die Landwirtschaft sowie Ableitung erster Perspektiven. PIK-Report No.83, Postdam 2003 http://www.pik-potsdam.de/news/brdbg_studie.html
  23. Groth JV, Krupa SV (2000) Crop ecosystem responses to climatic change: interactive effects of ozone, ultraviolet-B radiation, sulphur dioxide and carbon dioxide on crops. In: Reddy KR, Hodges HF (eds) Climate Change and Global Crop Productivity. CABI Publ, Wallingford, UK, pp 387–405Google Scholar
  24. Harrison PA, Butterfield RE, Orr JL (2000) Modelling climate change impacts on wheat, potato and grapevine in Europe. In: Downing TE, Harrison PA, Butterfield RE, Losdale KG (eds) Climate Change, Climate Variability and Agriculture in Europe: An Integrated Assessment. Research Report No.21, Environmental Change Unit. Univ Oxford, Oxford, UK, pp 367–392Google Scholar
  25. Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural climate variability. Nature 397: 688–691Google Scholar
  26. Idso SB, Idso KE (2001) Effects of atmospheric CO2 enrichment on plant constituents related to animal and human health. Environ Exp Bot 45: 179–199PubMedGoogle Scholar
  27. IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate Change 2001: The Scientific Basis. Cambridge Univ Press, UKGoogle Scholar
  28. Kang SZ, Zhang FC, Hu XT, Zhang, JH (2002) Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant Soil 238: 69–77Google Scholar
  29. Kimball BA (1983) Carbon dioxide and agricultural yield – an assemblage and analysis of 430 prior observations. Agron J 75:779–788Google Scholar
  30. Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77: 293–368CrossRefGoogle Scholar
  31. Krupa S, McGrath MT, Andersen CP, Booker FL, Chappelka AH, Chevone BI, Pell EJ, Zilinskas BA (2000) Ambient ozone and plant health. Plant Dis 85:4–13Google Scholar
  32. Lincoln DE, Fajer ED, Johnson RH (1993) Plant insect herbivore interactions in elevated CO2 environments. TREE 8: 64–68Google Scholar
  33. Loladze I (2002) Rising atmospheric CO2 and human nutrition: towards globally imbalanced plant stoichiometry? TREE 17:457–461Google Scholar
  34. Long SP, Woodward FI (eds) (1988) Plants and Temperature. Soc Exp Biol, CambridgeGoogle Scholar
  35. Long SP( 1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14: 729–739Google Scholar
  36. Luo Y, Mooney HA (eds) (1999) Carbon Dioxide and Environmental Stress. Academic Press, San Diego London Boston New York Sydney Tokyo, S 415Google Scholar
  37. Manderscheid R, Frühauf C, Weigel HJ (2002) Effects of free air CO2 enrichment (FACE) and soil nitrogen fertilizer on radiation absorption, radiation use efficiency and yield of winter barley. Proceedings of VII Congress of the European Society for Agronomy, Cordoba/Spain, S 207–208Google Scholar
  38. Manderscheid R, Frühauf C, Weigel HJ (2003) Wechselwirkung von CO2-Anreicherung unter Feldbedingungen (FACE) und Stickstoffversorgung auf Wachstum und Ertrag von Zuckerrüben. Mitt Ges Pflanzenbauwiss 15:158–160Google Scholar
  39. Manning WJ, von Tiedemann AV (1995) Climate change: potential effects of increased atmospheric carbon dioxide (CO2), ozone (O3), and ultraviolet-B (UV-B) radiation on plant diseases. Environ Pollut 88:219–245PubMedGoogle Scholar
  40. Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682Google Scholar
  41. Parry ML (1990) Climate Change and World Agriculture. Earthscan, LondonGoogle Scholar
  42. Parry ML, Rosenzweig C, Iglesias A, Fischer G, Livermore M (1999) Climate change and world food security: a new assessment. Global Environ Change 9:51–67CrossRefGoogle Scholar
  43. Parry ML (ed) (2000) The changing climate of Europe. Assessment of potential effects and adaptations for climate change in Europe. The Europe ACACIA Project. Jackson Environment Partner, Univ East Anglia, Norwich, UKGoogle Scholar
  44. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Change—Human Policy Dimensions 14:53–67Google Scholar
  45. Patterson DT (1995) Weeds in a changing climate. Weed Sci 43: 685–701Google Scholar
  46. Patterson DK, Westbrock JK, Joyce R JV, Lindgren PD, Rogasik R (1999) Weeds, insects and diseases. Climatic Change 43:711–727Google Scholar
  47. Petit JR, Jouzel J, Raynaud D et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostoc ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  48. Pleijel H, Mortensen L, Fuhrer J, Ojanpera K, Danielson H (1999) Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agricult Ecosys Environ 72:265–270Google Scholar
  49. Polley HW (2002) Implications of atmospheric and climatic change for crop yield. Crop Sci 42: 131–140PubMedGoogle Scholar
  50. Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. In: Rozema J, Lambers H, Van de Geijn S C, Cambridge M L (eds) CO2 and biosphere. Kluwer Academic Dordrecht, S 77–99Google Scholar
  51. Porter JR, Gwaith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron. 10: 23–36.Google Scholar
  52. Porter JH, Parry ML, Carter TR (1991) The potential effects of climatic change on agricultural insect pests. Agric Forest Meteorol 57: 221–240CrossRefGoogle Scholar
  53. Reddy KR, Hodges HF (eds) (2000) Climate Change and Global Productivity. CABI Publ, WallingfordGoogle Scholar
  54. Reilly JM (1999) Climate Change and Agriculture: The state of the scientific knowledge. Climatic Change 43:645–650CrossRefGoogle Scholar
  55. Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138CrossRefGoogle Scholar
  56. Rosenzweig C, Hillel D (eds) (1998) Climate Change and the Global Harvest. Oxford Univ Press, Oxford, UKGoogle Scholar
  57. Schenk U, Jäger HJ, Weigel HJ (1997) The response of perennial ryegrass/white clover swards to elevated atmospheric CO2 concentrations. II. Effects on yield, fodder quality and water use. Grass For Sci 52:232–241CrossRefGoogle Scholar
  58. Schneider SH, Easterling WE, Mearns LO (2000) Adaptation: sensitivity to natural variability, agent assumptions and dynamic climate changes. Climate Change 45:203–221CrossRefGoogle Scholar
  59. Schulze E D, Beck E, Müller-Hohenstein K (Hrsg) (2002) Pflanzenökologie. Spektrum Akademischer Verlag, Heidelberg, Berlin, S 846Google Scholar
  60. Tester RF, Morrison WR, Ellis RH et al. (1995) Effects of elevated growth temperature and carbon dioxide levels on some physicochemical properties of wheat starch. J Cereal Sci 22:63–71Google Scholar
  61. Volk, M, Niklaus PA, Körner C (2000) Soil moisture effects determine CO2 responses of grassland species. Oecologia 125:380–388CrossRefGoogle Scholar
  62. Walker B, Steffen W (1996) Global Change and Terrestrial Ecosystems. Cambridge Univ Press, Cambridge, S 619Google Scholar
  63. Weigel HJ (2004) Air Pollutants: Interactions with Elevated Carbon Dioxide. In: Encyclopedia of Plant and Crop Science. Marcel Dekker, New York. 17–19Google Scholar
  64. Weigel HJ, Manderscheid R (2004) CO2 enrichment effects on forage and grain nitrogen content of pasture and cereal plants. J Crop Production 13:73–89Google Scholar
  65. Wheeler TR, Batts GR, Ellis RH, Hardley P, Morrison JIL (1996) Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J Agric Sci 127: 37–48Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für AgrarökologieBundesforschungsanstalt für Landwirtschaft (FAL)Braunschweig

Personalised recommendations