Skip to main content

Advertisement

Log in

Effects of harvesting intensity and site conditions on biomass production of northern Patagonia shrublands

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Forest biomass with energy purpose is gaining importance. Although there is a lot of information about afforestation for energy purpose, native resource management for biofuel production is a less studied topic. Consequently, generating information about management of local forest types that have potential for providing biomass for energy, such as resprouting shrublands, becomes a priority objective. We evaluated the effects of harvesting intensity on coppice growth in three resprouting shrublands with contrasting site conditions in northern Patagonia (Argentina). At each site, three harvesting treatments in strips of increasing width were randomly assigned to six permanent plots of 31.5 × 45 m during 2013–2014. Four years after, we measured resprouts (number and size of stems) of the five native dominant species. We found that almost all species responded to harvesting intensity by enhancing the coppice growth rates. Nonetheless, species showed different strategies for resource obtention. When analyzing at the community level, the response to harvesting intensity was consistent among the hillside sites, but conservative in the valley bottom site with the worst environmental conditions. Due to the high response of these species to harvesting intensity, we conclude that intense shrubland management for biomass commercialization could be a viable option depending on site conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937. https://doi.org/10.1016/j.rser.2009.11.006

    Article  CAS  Google Scholar 

  • Ashby WC, Bresnan DF, Kjelgren RK, Roth PL, Preece JA, Huetteman CA (1993) Coppice growth and water relations in silver maple. Biomass Bioenergy 5:317–323

    Article  Google Scholar 

  • Avohou TH, Houehounha R, Glele-kakai R, Ephrem A, Sinsin B (2010) Firewood yield and profitability of a traditional Daniellia oliveri short-rotation coppice on fallow lands in Benin. Biomass Bioenergy 35:562–571. https://doi.org/10.1016/j.biombioe.2010.10.030

    Article  Google Scholar 

  • Bahamonde HA, Pastur GM, Lencinas MV, Soler R, Rosas YM (2018) The relative importance of soil properties and regional climate as drivers of productivity in southern Patagonia’s Nothofagus antarctica forests. Ann For Sci. https://doi.org/10.1007/s13595-018-0725-7

    Article  Google Scholar 

  • Bartoń K (2019) Multi-model inference. R package version 1.43.15 https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf. Accessed 4 July 2019

  • Bellingham PJ, Sparrow AD (2013) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416. https://doi.org/10.1034/j.1600-0706.2000.890224.x

    Article  Google Scholar 

  • Benetka V, Vrátný F, Šálková I (2007) Comparison of the productivity of Populus nigra L. with an interspecific hybrid in a short rotation coppice in marginal areas. Biomass Bioenergy 31:367–374. https://doi.org/10.1016/j.biombioe.2007.01.005

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  CAS  Google Scholar 

  • Botequim B, Zubizarreta-Gerendiain A, Garcia-Gonzalo J, Silva A, Marques S, Fernandes PM, Pereira JMC, Tomé M (2014) A model of shrub biomass accumulation as a tool to support management of Portuguese forests. IForest 8:114–125. https://doi.org/10.3832/ifor0931-008

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Cavallero L, López DR, Raffaele E, Aizen MA (2015) Structural – functional approach to identify post-disturbance recovery indicators in forests from northwestern Patagonia: a tool to prevent state transitions. Ecol Indic 52:85–95. https://doi.org/10.1016/j.ecolind.2014.11.019

    Article  Google Scholar 

  • Chauchard L, Frugoni M, Novack C (2015) Manual de Buenas Practicas para el Manejo de las Plantaciones Forestales en la Region de la Patagonia Andina. Buenos Aires

  • Coulin C, Aizen MA, Garibaldi LA (2019) Contrasting responses of plants and pollinators to woodland disturbance. Austral Ecol. https://doi.org/10.1111/aec.12771

    Article  Google Scholar 

  • Cruz De León G, Uranga-Valencia LP (2013) Theoretical evaluation of Huber and Smalian methods applied to tree stem classical geometries. Bosque 34:311–317. https://doi.org/10.4067/S0717-92002013000300007

    Article  Google Scholar 

  • Dezzotti A, Sancholuz L (1991) Los bosques de Austrocedrus chilensis en Argentina: ubicación, estructura y crecimiento. Bosque 12:43–52

    Article  Google Scholar 

  • European Commissio (2003) Directive 2003/87/EC of the European Parliament and of the Council of 13 October 2003. Off J Eur Union 275:32–46 (Annex IV)

    Google Scholar 

  • FAO (2008) Bosques y energía Cuestiones clave, Roma

  • Fernandes PM (2015) Empirical support for the use of prescribed burning as a fuel treatment. Curr For Rep 1:118–127

    Google Scholar 

  • Fernández C, Vega JA (2014) Shrub recovery after fuel reduction treatments and a subsequent fire in a Spanish heathland. Plant Ecol 215(11):1233–1243

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Connell M (2003) Competition in thinned Silvertop Ash (Eucalyptus sieberi L. Johnson) stands from early coppice growth. For Ecol Manage 174:459–475

    Article  Google Scholar 

  • Forrester DI, Collopy JJ, Beadle CL, Baker TG (2013) Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. For Ecol Manage 288:21–30. https://doi.org/10.1016/j.foreco.2011.11.024

    Article  Google Scholar 

  • Gargaglione V, Peri P, Rubio G (2010) Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For Ecol Manage 259:1118–1126. https://doi.org/10.1016/j.foreco.2009.12.025

    Article  Google Scholar 

  • Garibaldi LA, Aristimuño FJ, Oddi F, Tiribelli FJ (2017) Inferencia multimodelo en ciencias sociales y ambientales. Ecol Austral. https://doi.org/10.25260/EA.17.27.3.0.513

    Article  Google Scholar 

  • Glithero N, Wilson P, Ramsden S (2013) Prospects for arable farm uptake of short rotation coppice willow and miscanthus in England. Appl Energy 107:209–218

    Article  Google Scholar 

  • Goldenberg MG, Gowda JH, Casas C, Garibaldi LA (2018) Efecto de la tasa de descuento sobre la priorización de alternativas de manejo del matorral Norpatagónico argentino. Bosque 39:217–226. https://doi.org/10.4067/S0717-92002018000200217

    Article  Google Scholar 

  • González-González BD, Sixto H, Alberdi I, Esteban L, Guerrero S, Pasalodos M, Vázquez A, Cañellas I (2017) Estimation of shrub biomass availability along two geographical transects in the Iberian Peninsula for energy purposes. Biomass Bioenergy 105:211–218. https://doi.org/10.1016/j.biombioe.2017.07.011

    Article  Google Scholar 

  • Gracia M, Retana J (2004) Effect of site quality and shading on sprouting patterns of holm oak coppices. For Ecol Manage 188:39–49. https://doi.org/10.1016/j.foreco.2003.07.023

    Article  Google Scholar 

  • Gyenge J, Fernández ME, Sarasola M, Schlichter T (2008) Testing a hypothesis of the relationship between productivity and water use efficiency in Patagonian forests with native and exotic species. For Ecol Manage 255:3281–3287. https://doi.org/10.1016/j.foreco.2008.01.078

    Article  Google Scholar 

  • Gyenge J, Fernández ME, Sarasola M, De Urquiza M, Schlichter T (2009) Ecuaciones para la estimación de biomasa aérea y volumen de fuste de algunas especies leñosas nativas en el valle del río Foyel, NW Patagonia Argentina. Bosque 30:95–101

    Article  Google Scholar 

  • Huber JA, May K, Willow AÁ (2016) Allometric tree biomass models of various species grown in short-rotation agroforestry systems. Eur J For Res. https://doi.org/10.1007/s10342-016-1010-7

    Article  Google Scholar 

  • Karp A, Shield I (2014) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:15–32. https://doi.org/10.1111/j.1469-8137.2008.02432.x

    Article  Google Scholar 

  • Kauter D, Lewandowski I, Claupein W (2003) Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use—a review of the physiological basis and management influences. Biomass Bioenergy 24:411–427

    Article  CAS  Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411. https://doi.org/10.1016/j.tplants.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Kitzberger T, Veblen TT (1999) Fire-induced changes in northern Patagonian landscapes. Landsc Ecol 14:1–15. https://doi.org/10.1023/A:1008069712826

    Article  Google Scholar 

  • Kobayashi S, Turnbull JW, Toma T, Mori T, Majid NMNA (1999) Rehabilitation of degraded tropical forest ecosystems: workshop proceedings, 2–4 November, Bogor, Indonesia, pp 151–156

  • Landesmann JB, Gowda JH, Kitzberger T (2016) Temporal shifts in the interaction between woody resprouters and an obligate seeder tree during a post-fire succession in Patagonia. J Veg Sci. https://doi.org/10.1111/jvs.12430

    Article  Google Scholar 

  • Madrigal J, Fernández-Miguela I, Hernando C, Guijarro M, Vega-Nieva DJ, Tolosana E (2016) Does forest biomass harvesting for energy reduce fire hazard in the Mediterranean basin? A case study in the Caroig Massif (Eastern Spain). Eur J For Res. https://doi.org/10.1007/s10342-016-1004-5

    Article  Google Scholar 

  • Marino E, Guijarro M, Hernando C, Madrigal J, Dıéz C (2011) Fire hazard after prescribed burning in a gorse shrubland: implications for fuel management. J Environ Manag 92:1003–1011

    Article  Google Scholar 

  • Marino E, Hernando C, Madrigal J, Guijarro M (2014) Short-term effect of fuel treatments on fire behaviour in a mixed heathland: a comparative assessment in an outdoor wind tunnel. Int J Wildland Fire 23:1097–1107

    Article  Google Scholar 

  • Mroz GM, Frederick DJ, Jurgensen MF (1985) Site and fertilizers effect on northern hardwood stump sprouting. Can J For 15(3):535–543

    Google Scholar 

  • Neke KS, Owen-smith N, Witkowski ETF (2006) Comparative resprouting response of Savanna woody plant species following harvesting: the value of persistence. For Ecol Manage 232:114–123. https://doi.org/10.1016/j.foreco.2006.05.051

    Article  Google Scholar 

  • Oliveira N, Rodríguez-soalleiro R, Pérez-cruzado C, Cañellas I, Sixto H, Ceulemans R (2018) Above- and below-ground carbon accumulation and biomass allocation in poplar short rotation plantations under Mediterranean conditions. For Ecol Manage 428:57–65. https://doi.org/10.1016/j.foreco.2018.06.031

    Article  Google Scholar 

  • Pretzsch H, del Río M, Biber P, Arcangeli C, Bielak K, Brang P, Dudzinska M, Forrester DI, Klädtke J, Kohnle U, Ledermann T, Matthews R, Nagel J, Nagel R, Nilsson U, Ningre F, Nord-Larsen T, Wernsdörfer H, Sycheva E (2019) Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: review and perspectives. Eur J Forest Res 138:165–185. https://doi.org/10.1007/s10342-018-1151-y

    Article  Google Scholar 

  • R Foundation for Statistical Computing, R Core Team (2020) https://www.r-project.org. Accessed 1 Mar 2020

  • Regos A, Aquilué N, López I, Codina M, Retana J, Brotons L (2016) Synergies between forest biomass extraction for bioenergy and fire suppression in mediterranean ecosystems: insights from a storyline-and-simulation approach. Ecosystems 19:786–802. https://doi.org/10.1007/s10021-016-9968-z

    Article  Google Scholar 

  • Reque JA, Sarasola M, Gyenge J, Fernández ME (2007) Caracterización silvícola de ñirantales del norte de la Patagonia para la gestión forestal sostenible. Bosque 28:33–45

    Article  Google Scholar 

  • Rusch VE, Rusch GM, Goijman AP, Varela S, Claps L (2017) Ecosystem services to support environmental and socially sustainable decision-making. Ecol Austral 27:162–176

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, EISPACK, Heisterkamp S, Van Willigen B, R Core Team (2020) nlme: linear and nonlinear mixed effects models. R package version 3.1-144. https://svn.r-project.org/R-packages/trunk/nlme. Accessed 2 Mar 2020

  • Serapiglia MJ, Gouker FE, Smart LB (2014) Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol 14:74

    Article  Google Scholar 

  • Shackleton CM (2001) Managing regrowth of an indigenous savanna tree species (Terminalia sericea) for fuelwood: the influence of stump dimensions and post-harvest coppice pruning. Biomass Bioenergy 20:261–270

    Article  Google Scholar 

  • Skaug H, Fournier D, Nielsen A, Magnusson A, Bolker B (2016) Generalized linear mixed models using AD Model builder. R package version 0.8.3.3.15. http://glmmadmb.r-forge.r-project.org. http://admb-project.org. Accessed 5 Mar 2020

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31. https://doi.org/10.1093/forestry/cpm041

    Article  Google Scholar 

  • Speziale KL, Ruggiero A, Ezcurra C (2010) Plant species richness–environment relationships across the Subantarctic–Patagonian transition zone. J Biogeogr 37:449–464. https://doi.org/10.1111/j.1365-2699.2009.02213.x

    Article  Google Scholar 

  • Spinelli R, Pari L, Aminti G, Magagnotti N, Giovannelli A (2017) Mortality, re-sprouting vigor and physiology of coppice stumps after mechanized cutting. Ann For Sci 74:5. https://doi.org/10.1007/s13595-016-0604-z

    Article  Google Scholar 

  • Tiribelli F, Kitzberger T, Morales JM (2018) Fire succession promote alternative stable states and positive fire–vegetation feedbacks. J Veg Sci. https://doi.org/10.1111/jvs.12620

    Article  Google Scholar 

  • USDA-Natural Resources Conservation Service (2014) Keys to soil taxonomy, 12th edn. Washington

  • Veblen TT, Lorenz DC (1987) Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Vegetation 71(2):113–126

    Google Scholar 

  • Vila M, Terradas J (1995) Effects of nutrient availability and neighbours on shoot growth, re-sprouting and flowering of Erica multiflora. J Veg Sci 6(3):411–416

    Article  Google Scholar 

  • Willebrand EVA, Ledin S (1993) Willow coppice systems in short rotation forestry: effects of plant spacing, rotation length and clonal composition on biomass production. Biomass Bioenergy 4:323–331

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the private forest owners for allowing us to install the experiments in their fields. We specially thank Y. Cardoso and A. Henry for field assistance at various stages and also, two anonymous reviewers for their comments. The study was funded by Agencia Nacional de Promoción Científica y Tecnológica—Argentina (PICT 2013-1079 and PICT 2016-0305), Universidad Nacional de Río Negro (PI-40-B-399) and a Consejo Nacional de Investigaciones Científicas y Técnicas-Argentina scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías G. Goldenberg.

Additional information

Communicated by Lluís Coll.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldenberg, M.G., Oddi, F.J., Amoroso, M.M. et al. Effects of harvesting intensity and site conditions on biomass production of northern Patagonia shrublands. Eur J Forest Res 139, 881–891 (2020). https://doi.org/10.1007/s10342-020-01292-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-020-01292-6

Keywords

Navigation