European Journal of Forest Research

, Volume 138, Issue 6, pp 1005–1013 | Cite as

Understanding and protecting forest biodiversity in relation to species and local contributions to beta diversity

  • Lingzhao Tan
  • Chunyu Fan
  • Chunyu Zhang
  • Xiuhai ZhaoEmail author
Original Paper


Beta diversity is an essential topic for understanding the spatial organization of species composition. By partitioning beta diversity into local contributions to beta diversity (LCBDs) and species contributions to beta diversity (SCBDs), this study can help to arrive at a more general and specific understanding of how beta diversity responds to environmental conditions and is affected by ecological and biological traits of species, which will provide useful advice for the conservation of forest biodiversity. In this study, we used data from a temperate near-mature forest in northeastern China. We used the method of beta regression to point out important factors affecting LCBD and SCBD. The results showed that LCBD was strongly related to species richness, abundance and abiotic environmental conditions, while SCBD was significantly affected by abundance and species niche characteristics. We conclude that our results are of considerable importance for the conservation of forest biodiversity and are of the opinion that these can provide detailed plans in conservation decision making.


Beta diversity Local contributions to beta diversity Species contributions to beta diversity Forest conservation Beta regression 



This research is supported by the Key Project of National Key Research and Development Plan (2017YFC0504005) and the Program of National Natural Science Foundation of China (31670643).


  1. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJ, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14(1):19–28. CrossRefGoogle Scholar
  2. Borcard D, Gillet F, Legendre P (2018) Numerical ecology with R. Use R! Series, Springer, Berlin. ISBN 978-3-319-71403-5, eBook ISBN 978-3-319-71404-2Google Scholar
  3. Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15(6):584–593. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124(2):255–279CrossRefGoogle Scholar
  5. Caughlin TT, Ferguson JM, Lichstein JW, Bunyavejchewin S, Levey DJ (2014) The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology 95(4):952–962. CrossRefPubMedGoogle Scholar
  6. Chase JM, Leibold MA (2003) Ecological niches. Chicago University Press, ChicagoCrossRefGoogle Scholar
  7. Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34(2):1–24CrossRefGoogle Scholar
  8. Dănescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182(2):319–333. CrossRefPubMedGoogle Scholar
  9. De Cáceres M, Legendre P, Valencia R, Cao M, Chang LW, Chuyong G, Condit R, Hao Z, Hsieh CF, Hubbell S, Kenfack D, Ma K, Mi X, Supardi Noor MN, Kassim AR, Ren H, Su SH, Sun IF, Thomas D, Ye W, He F (2012) The variation of tree beta diversity across a global network of forest plots. Glob Ecol Biogeorg 21:1191–1202. CrossRefGoogle Scholar
  10. Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81(10):2914–2927CrossRefGoogle Scholar
  11. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Mar-quéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. CrossRefGoogle Scholar
  12. Dornelas M, Moonen AC, Magurran AE, Bàrberi P (2009) Species abundance distributions reveal environmental heterogeneity in modified landscapes. J Appl Ecol 46(3):666–672. CrossRefGoogle Scholar
  13. Dray S, Dufour A, Leeuw JD, Zeileis A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20CrossRefGoogle Scholar
  14. Dray S, Blanchet G, Borcard D, Clappe S, Guénard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2018) adespatial: multivariate multiscale spatial analysis. R package version 0.1-1.
  15. Flinn KM, Gouhier TC, Lechowicz MJ, Waterway MJ (2010) The role of dispersal in shaping plant community composition of wetlands within an old-growth forest. J Ecol 98(6):1292–1299. CrossRefGoogle Scholar
  16. Geertsema W, Sprangers JTCM (2002) Plant distribution patterns related to species characteristics and spatial and temporal habitat heterogeneity in a network of ditch banks. Plant Ecol 162(1):91–108CrossRefGoogle Scholar
  17. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242(5396):344–347CrossRefGoogle Scholar
  18. Hardin G (1960) The competitive exclusion principle. Science 131(3409):1292–1297CrossRefGoogle Scholar
  19. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89(6):947–959CrossRefGoogle Scholar
  20. Heino J, Grönroos M (2014) Untangling the relationships among regional occupancy, species traits, and niche characteristics in stream invertebrates. Ecol Evol 4(10):1931–1942. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Heino J, Grönroos M (2016) Exploring species and site contributions to beta diversity in stream insect assemblages. Oecologia 183(1):151–160. CrossRefPubMedGoogle Scholar
  22. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, NJGoogle Scholar
  23. Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283(5401):554–557CrossRefGoogle Scholar
  24. John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. PNAS 104(3):864–869. CrossRefGoogle Scholar
  25. Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582. CrossRefGoogle Scholar
  26. Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29(5):592–599. CrossRefGoogle Scholar
  27. Lee PC (1993) The effect of seed dispersal limitations on the spatial distribution of a gap species, seaside goldenrod (Solidago sempervirens). Can J Bot 71(7):978–984CrossRefGoogle Scholar
  28. Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673CrossRefGoogle Scholar
  29. Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett 16(8):951–963. CrossRefPubMedGoogle Scholar
  30. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129(2):271–280. CrossRefPubMedGoogle Scholar
  31. Liang J, Watson JV, Zhou M, Lei XD (2016) Effects of productivity on biodiversity in forest ecosystems across the United States and China. Conserv Biol 30(2):308–317. CrossRefPubMedGoogle Scholar
  32. Liu Y, Li F, Jin G (2014) Spatial patterns and associations of four species in an old-growth temperate forest. J Plant Interact 9(1):745–753. CrossRefGoogle Scholar
  33. Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16(2):151–157. CrossRefPubMedGoogle Scholar
  34. Palmer MW, Dixon PM (1990) Small-scale environmental heterogeneity and the analysis of species distributions along gradients. J Veg Sci 1(1):57–65CrossRefGoogle Scholar
  35. Pitman NCA, Terborgh JW, Silman MR, Percy NV, Neill DA, Cerón CE, Palacios WA (2001) Dominance and distribution of tree species in upper amazonian terra firme forests. Ecology 82(8):2101–2117.;2 CrossRefGoogle Scholar
  36. Silva PGD, Hernández MIM (2014) Local and regional effects on community structure of dung beetles in a mainland-island scenario. PLoS ONE 9(10):e111883–e111883. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16(8):1104–1114. CrossRefPubMedGoogle Scholar
  38. Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2015) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31(1):67–80. CrossRefPubMedGoogle Scholar
  39. Tuomisto H, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299(5604):241–244. CrossRefPubMedGoogle Scholar
  40. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30(3):279–338CrossRefGoogle Scholar
  41. Wu ZY, Raven PH, Hong DY (1994–2013) Flora of China. Science Press and Missouri Botanical Garden Press, Beijing & St. Louis (in Chinese) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center of Forest Management Engineering of State Forestry and Grassland AdministrationBeijing Forestry UniversityBeijingPeople’s Republic of China

Personalised recommendations