Advertisement

Forest decision support systems for the analysis of ecosystem services provisioning at the landscape scale under global climate and market change scenarios

  • Eva-Maria NordströmEmail author
  • Maarten NieuwenhuisEmail author
  • Emin Zeki Başkent
  • Peter Biber
  • Kevin Black
  • Jose G. Borges
  • Miguel N. Bugalho
  • Giulia Corradini
  • Edwin Corrigan
  • Ljusk Ola Eriksson
  • Adam Felton
  • Nicklas Forsell
  • Geerten Hengeveld
  • Marjanke Hoogstra-Klein
  • Anu Korosuo
  • Matts Lindbladh
  • Isak Lodin
  • Anders Lundholm
  • Marco Marto
  • Mauro Masiero
  • Gintautas Mozgeris
  • Davide Pettenella
  • Werner Poschenrieder
  • Robert Sedmak
  • Jan Tucek
  • Davide Zoccatelli
Original Paper

Abstract

Sustainable forest management is driving the development of forest decision support systems (DSSs) to include models and methods concerned with climate change, biodiversity and various ecosystem services (ESs). The future development of forest landscapes is very much dependent on how forest owners act and what goes on in the wider world; thus, models are needed that incorporate these aspects. The objective of this study is to assess how nine European state-of-the-art forest DSSs cope with these issues. The assessment focuses on the ability of these DSSs to generate landscape-level scenarios to explore the output of current and alternative forest management models (FMMs) in terms of a range of ESs and the robustness of these FMMs in the face of increased risks and uncertainty. Results show that all DSSs assessed in this study can be used to quantify the impacts of both stand- and landscape-level FMMs on the provision of a range of ESs over a typical planning horizon. DSSs can be used to assess how timber price trends may impact that provision over time. The inclusion of forest owner behavior as reflected by the adoption of specific FMMs seems to be also in the reach of all DSSs. Nevertheless, some DSSs need more data and development of models to estimate the impacts of climate change on biomass production and other ESs. Spatial analysis functionality needs to be further developed for a more accurate assessment of the landscape-level output of ESs from both current and alternative FMMs.

Keywords

ALTERFOR Biodiversity Forest management models Forest owner behavior 

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 676754. We further acknowledge the Portuguese Science Foundation (FCT) for supporting Miguel Bugalho by a Principal Investigator contract (IF/01171/2014), for funding the Forest Research Centre (UID/AGR/00239/2013) and for the PhD Grant of Marco Marto (SFRH/BD/108225/2015).

Supplementary material

10342_2019_1189_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. Andrew ME, Wulder MA, Nelson TA, Coops NC (2015) Spatial data, analysis approaches, and information needs for spatial ecosystem service assessments: a review. GISci Remote Sens 52(3):344–373.  https://doi.org/10.1080/15481603.2015.1033809 Google Scholar
  2. Baker WL (1992) The landscape ecology of large disturbances in the design and management of nature reserves. Landsc Ecol 7:181–194.  https://doi.org/10.1007/BF00133309 Google Scholar
  3. Baskent EZ, Keles S (2005) Spatial forest planning: a review. Ecol Model 188(2–4):145–173.  https://doi.org/10.1016/j.ecolmodel.2005.01.059 Google Scholar
  4. Başkent EZ, Keleş S, Kadıoğulları AI (2013) Challenges in developing and implementing a decision support systems (ETÇAP) in forest management planning: a case study in Honaz and Ibradı, Turkey. Scand J For Res 29(sup1):121–131.  https://doi.org/10.1080/02827581.2013.822543 Google Scholar
  5. Berg A, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests—distribution and habitat associations. Conserv Biol 8(3):718–731Google Scholar
  6. Biber P, Borges JG, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-Debets R, Corrigan E, Eriksson LO, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M, Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D, Sedmák R, Smreček R, Stanislovaitis A, Tomé M, Trubins R, Tuček J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2015) How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests 6:1666–1695.  https://doi.org/10.3390/f6051666 Google Scholar
  7. Borges JG, Hoganson HM (2000) Structuring a landscape by forestland classification and harvest scheduling spatial constraints. For Ecol Manag 130:269–275.  https://doi.org/10.1016/S0378-1127(99)00180-2 Google Scholar
  8. Borges JG, Garcia-Gonzalo J, Bushenkov VA, McDill ME, Marques S, Oliveira MM (2014a) Addressing multi-criteria forest management with Pareto Frontier methods: an application in Portugal. For Sci 60:63–72.  https://doi.org/10.5849/forsci.12-100 Google Scholar
  9. Borges JG, Nordström E-M, Garcia-Gonzalo J, Hujala T, Trasobares A (2014b) Computer-based tools for supporting forest management: the experience and the expertise world-wide. Department of Forest Resource Management, Swedish University of Agricultural Sciences (SLU), UmeåGoogle Scholar
  10. Borges JG, Marques S, Garcia-Gonzalo J, Rahman AU, Bushenkov VA, Sottomayor M, Carvalho PO, Nordström E-M (2017) A multiple criteria approach for negotiating ecosystem services supply targets and forest owners’ programs. For Sci 63:49–61.  https://doi.org/10.5849/FS-2016-035 Google Scholar
  11. Botequim B, Garcia-Gonzalo J, Marques S, Ricardo A, Borges JG, Tomé M, Oliveira M (2013) Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest 6:217–227.  https://doi.org/10.3832/ifor0821-006 Google Scholar
  12. Bradshaw FJ (1992) Quantifying edge effect and patch size for multiple-use silviculture: a discussion paper. For Ecol Manag 48:249–264.  https://doi.org/10.1016/0378-1127(92)90148-3 Google Scholar
  13. Bugalho MN, Caldeira MC, Pereira JS, Aronson JA, Pausas J (2011) Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Front Ecol Environ 9(5):278–286.  https://doi.org/10.1890/100084 Google Scholar
  14. Bugalho MN, Dias FS, Briñas B, Cerdeira JO (2016) Using the high conservation value forest concept and Pareto optimization to identify areas maximizing biodiversity and ecosystem services in cork oak landscapes. Agrofor Syst 90:35–44.  https://doi.org/10.1007/s10457-015-9814-x Google Scholar
  15. Chikumbo O, Starka ST (2012) Maintaining an optimal flow of forest products under a carbon market: approximating a Pareto set of optimal silvicultural regimes for Eucalyptus fastigata. Open J For 2(3):138–149.  https://doi.org/10.4236/ojf.2012.23017 Google Scholar
  16. Corrigan E, Nieuwenhuis M (2017) Using goal-programming to model the effect of stakeholder determined policy and industry changes on the future management of and ecosystem services provision by Ireland’s Western Peatland forests. Sustainability 9(1):11.  https://doi.org/10.3390/su9010011 Google Scholar
  17. Dearing Oliver C, Nassar NT, Lippke BR, McCartet JB (2014) Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain For 33(3):248–275.  https://doi.org/10.1080/10549811.2013.839386 Google Scholar
  18. Donlan J, Black K, Hendrick E, O’Driscoll E, Byrne KA (2013) Future change in carbon in harvested wood products from Irish forests established prior to 1990. Carbon Manag 4(4):377–386.  https://doi.org/10.4155/cmt.13.37 Google Scholar
  19. Dudley N (ed) (2008) Guidelines for applying protected area management categories, including Stolton S, Shadie P, Dudley N (2013) IUCN WCPA best practice guidance on recognising protected areas and assigning management categories and governance types. Best Practice Protected Area Guidelines Series No. 21, IUCN, GlandGoogle Scholar
  20. Edwards D, Jensen FS, Marzano M, Mason B, Pizzirani S, Schelhaas M-J (2011) A theoretical framework to assess the impacts of forest management on the recreational value of European forests. Ecol Indic 11(1):81–89.  https://doi.org/10.1016/j.ecolind.2009.06.006 Google Scholar
  21. Eigenbrod F, Armsworth P, Anderson B, Heinemeyer A, Gillings S, Roy D, Thomas C, Gaston K (2010) The impact of proxy-based methods on mapping the distribution of ecosystem services. J Appl Ecol 47:377–385.  https://doi.org/10.1111/j.1365-2664.2010.01777.x Google Scholar
  22. Fabrika M, Pretzsch H (2013) Forest ecosystem analysis and modelling. Technical University in Zvolen, ZvolenGoogle Scholar
  23. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515.  https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 Google Scholar
  24. Felton A, Ranius T, Roberge J-M, Öhman K, Lämås T, Hynynen J, Juutinen A, Mönkkönen M, Nilsson U, Lundmark T (2017a) Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations. J Environ Manag 197:404–414.  https://doi.org/10.1016/j.jenvman.2017.04.001 Google Scholar
  25. Felton A, Sonesson J, Nilsson U, Lämås T, Lundmark T, Nordin A, Ranius T, Roberge J-M (2017b) Varying rotation lengths in northern production forests: implications for habitats provided by retention and production trees. Ambio 46(3):324–334.  https://doi.org/10.1007/s13280-017-0909-7 Google Scholar
  26. Filyushkina A, Strange N, Löf M, Ezebilo EE, Boman M (2016) Non-market forest ecosystem services and decision support in Nordic countries. Scand J For Res 31(1):99–110.  https://doi.org/10.1080/02827581.2015.1079643 Google Scholar
  27. Franklin JF, Forman RT (1987) Creating landscape patterns by forest cutting: ecological consequences and principles. Landsc Ecol 1:5–18.  https://doi.org/10.1007/BF02275261 Google Scholar
  28. Garcia-Gonzalo J, Zubizarreta-Gerendiain A, Ricardo A, Marques S, Botequim B, Borges JG, Oliveira MM, Tomé M, Pereira JMC (2012) Modelling wildfire risk in pure and mixed forest stands in Portugal. Allgemeine Forst und Jagdzeitung (AFJZ) German J For Res 183(11/12):238–248Google Scholar
  29. González JR, Trasobares A, Palahí M, Pukkala T (2007) Predicting tree survival in burned forests in Catalonia (North-East Spain) for strategic forest planning. Ann For Sci 64:733–742.  https://doi.org/10.1051/forest:2007053 Google Scholar
  30. Grêt-Regamey A, Sirén E, Brunner SH, Weibel B (2016) Review of decision support tools to operationalize the ecosystem services concept. Ecosyst Serv 26:306–315.  https://doi.org/10.1016/j.ecoser.2016.10.012 Google Scholar
  31. Gutsch M, Lasch-Born P, Suckow F, Reyer CPO (2015) Modeling of two different water uptake approaches for mono-and mixed-species forest stands. Forests 6(6):2125–2147.  https://doi.org/10.3390/f6062125 Google Scholar
  32. Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalský R, Aoki K, Cara SD, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39(10):5690–5702.  https://doi.org/10.1016/j.enpol.2010.03.030 Google Scholar
  33. Hengeveld GM, Didion M, Clerkx S, Elkin C, Nabuurs G-J, Schelhaas M-J (2015) The landscape-level effect of individual-owner adaptation to climate change in Dutch forests. Reg Environ Change 15(8):1515–1529.  https://doi.org/10.1007/s10113-014-0718-5 Google Scholar
  34. Hengeveld G, Schüll E, Trubins R, Sallnäs O (2017) Forest Landscape Development Scenarios (FoLDS)—a framework for integrating forest models, owners’ behaviour and socio-economic developments. For Policy Econ 85:245–255.  https://doi.org/10.1016/j.forpol.2017.03.007 Google Scholar
  35. Hoogstra-Klein MA, Brukas V, Wallin I (2017) Multiple-use forestry as a boundary object: from a shared ideal to multiple realities. Land Use Policy 69:247–258.  https://doi.org/10.1016/j.landusepol.2017.08.029 Google Scholar
  36. Hunter ML (1990) Wildlife, forests and forestry. Principles of managing forests for biological diversity. Prentice-Hall, New JerseyGoogle Scholar
  37. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. Institute for Global Environmental Strategies, HayamaGoogle Scholar
  38. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  39. IPCC (2014a) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  40. IPCC (2014b) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  41. Johansson V, Felton A, Ranius T (2016) Long-term landscape scale effects of bioenergy extraction on dead wood-dependent species. For Ecol Manag 371:103–113.  https://doi.org/10.1016/j.foreco.2015.10.046 Google Scholar
  42. Jonsson M, Ranius T, Ekvall H, Bostedt G, Dahlberg A, Ehnström B, Nordén B, Stokland JN (2006) Cost-effectiveness of silvicultural measures to increase substrate availability for red-listed wood-living organisms in Norway spruce forests. Biol Conserv 127(4):443–462.  https://doi.org/10.1016/j.biocon.2005.09.004 Google Scholar
  43. Kareiva P, Tallis H, Ricketts T, Daily G, Polasky S (eds) (2011) Natural capital. Theory and practice of mapping ecosystem services. Oxford University Press, OxfordGoogle Scholar
  44. Kent B, Bare BB, Field RC, Bradley GA (1991) Natural resource land management planning using large-scale linear programs: the USDA Forest Service experience with FORPLAN. Oper Res 39(1):13–27.  https://doi.org/10.1287/opre.39.1.13 Google Scholar
  45. Kindermann GE, Schörghuber S, Linkosalo T, Sanchez A, Rammer W, Seidl R, Lexer MJ (2013) Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag 8(1):2.  https://doi.org/10.1186/1750-0680-8-2 Google Scholar
  46. Kindler E (2016) A comparison of the concepts: ecosystem services and forest functions to improve interdisciplinary exchange. For Policy Econ 67:52–59.  https://doi.org/10.1016/j.forpol.2016.03.011 Google Scholar
  47. Kuliešis A, Kasperavičius A, Kulbokas G, Brukas V, Petrauskas E, Mozgeris G (2017) Lithuania. In: Barreiro S, Schelhaas M, McRoberts R, Kändler G (eds) Forest inventory-based projection systems for wood and biomass availability. Managing Forest Ecosystems, vol 29. Springer, Cham, pp 223–239.  https://doi.org/10.1007/978-3-319-56201-8_19 Google Scholar
  48. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220(4):480–504.  https://doi.org/10.1016/j.ecolmodel.2008.10.018 Google Scholar
  49. Lindbladh M, Axelsson A-L, Hultberg T, Brunet J, Felton A (2014) From broadleaves to spruce—the borealization of southern Sweden. Scand J For Res 29(7):686–696.  https://doi.org/10.1080/02827581.2014.960893 Google Scholar
  50. Lindenmayer BD, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, WashingtonGoogle Scholar
  51. Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131(3):433–445.  https://doi.org/10.1016/j.biocon.2006.02.019 Google Scholar
  52. Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338(6112):1305–1306.  https://doi.org/10.1126/science.1231070 Google Scholar
  53. Lundmark T, Bergh J, Nordin A, Fahlvik N, Poudel BC (2016) Comparison of carbon balances between continuous-cover and clear-cut forestry in Sweden. Ambio 45(Suppl. 2):S203–S213.  https://doi.org/10.1007/s13280-015-0756-3 Google Scholar
  54. Luo X, He HS, Liang Y, Wang WJ, Wu Z, Fraser JS (2014) Spatial simulation of the effect of fire and harvest on aboveground tree biomass in boreal forests of Northeast China. Landsc Ecol 29(7):1187–1200.  https://doi.org/10.1007/s10980-014-0051-x Google Scholar
  55. Marques S, Garcia-Gonzalo J, Borges JG, Botequim B, Oliveira MM, Tomé J, Tomé M (2011) Developing post-fire Eucalyptus globulus Labill stand damage and tree mortality models for enhanced forest planning in Portugal. Silva Fenn 45(1):69–83Google Scholar
  56. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington D.CGoogle Scholar
  57. Molina-Herrera S, Haas E, Grote R, Kiese R, Klatt S, Kraus D, Kampffmeyer T, Friedrich R, Andreae H, Loubet B, Ammann C, Horváth L, Larsen K, Gruening C, Frumau A, Butterbach-Bahl K (2017) Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmos Environ 152:61–76.  https://doi.org/10.1016/j.atmosenv.2016.12.022 Google Scholar
  58. Moore PT, DeRose RJ, Long JN, van Miegroet H (2012) Using silviculture to influence carbon sequestration in Southern Appalachian spruce-fir forests. Forests 3(2):300–316.  https://doi.org/10.3390/f3020300 Google Scholar
  59. Mozgeris G, Brukas V, Stanislovaitis A, Kavaliauskas M, Palicinas M (2016) Owner mapping for forest scenario modelling—a Lithuanian case study. For Policy Econ 85:235–244.  https://doi.org/10.1016/j.forpol.2016.02.002 Google Scholar
  60. Muys B, Hynynen J, Palahi M, Lexer MJ, Fabrika M, Pretzsch H, Gillet F, Briceño E, Nabuurs G-J, Kint V (2010) Simulation tools for decision support to adaptive forest management in Europe. For Syst 19:86–99.  https://doi.org/10.5424/fs/201019S-9310 Google Scholar
  61. Naiman RJ, Decamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212.  https://doi.org/10.2307/1941822 Google Scholar
  62. Nieuwenhuis M, Nordström E-M (2017) Milestone 9—quality standard to be met by the upgraded DSSs. ALTERFOR Milestone report. https://www.alterfor-project.eu/files/alterfor/download/Deliverables/ALTERFOR%20MS9%20Quality%20standard%20upgradup%20DSS.PDF. Accessed 16 Nov 2017
  63. Nobre S, Eriksson Ljusk O, Trubins R (2016) The use of decision support systems in forest management: analysis of forsys country reports. Forests 7(3):72.  https://doi.org/10.3390/f7030072 Google Scholar
  64. Ode Å, Tveit MS, Fry G (2008) Capturing landscape visual character using indicators: touching base with landscape aesthetic theory. Landsc Res 33(1):89–117.  https://doi.org/10.1080/01426390701773854 Google Scholar
  65. Olajuyigbe SO, Tobin B, Gardiner P, Nieuwenhuis M (2011) Stocks and decay dynamics of above- and belowground coarse woody debris in managed Sitka spruce forests in Ireland. For Ecol Manag 262(6):1109–1118.  https://doi.org/10.1016/j.foreco.2011.06.010 Google Scholar
  66. Orazio C, Cordero Montoya R, Égolini M, Borges JG, Garcia-Gonzalo J, Barreiro S, Botequim B, Marques S, Sedmák R, Smrĕcek R, Brodrechtová Y, Brukas V, Chirici G, Marchetti M, Moshammer R, Biber P, Corrigan E, Eriksson LO, Favero M, Galev E, Hengeveld GM, Kavaliauskas M, Mozgeris G, Navráti R, Nieuwenhuis M, Paligorov I, Pettenella D, Stanislovaitis A, Tomé M, Trubins R, Tǔcek J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2017) Decision support tools and strategies to simulate forest landscape evolutions integrating forest owner behaviour: a review from the case studies of the European project, INTEGRAL. Sustainability 9(4):599.  https://doi.org/10.3390/su9040599 Google Scholar
  67. Packalen T, Marques AF, Rasinmäki J, Rosset C, Mounir F, Rodriguez LCE, Nobre SR (2013) A brief overview of forest management decision support systems (FMDSS) listed in the FORSYS wiki. For Syst 22(2):263–269.  https://doi.org/10.5424/fs/2013222-03192 Google Scholar
  68. Packalen T, Sallnäs O, Sirkiä S, Korhonen KT, Salminen O, Vidal C, Robert N, Colin A, Belouard T, Schadauer K, Berger A, Rego F, Louro G, Camia A, Räty M, San-Miguel-Ayanz J (2014) The European forestry dynamics model (EFDM). JRC scientific and policy reports. Publications Office of the European Union, LuxembourgGoogle Scholar
  69. Pretzsch H (2009) Forest dynamics, growth, and yield. A review, analysis of the present state, and perspective. Springer, Berlin.  https://doi.org/10.1007/978-3-540-88307-4_1 Google Scholar
  70. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21.  https://doi.org/10.1016/S0378-1127(02)00047-6 Google Scholar
  71. Rauscher HM (1999) Ecosystem management decision support for federal forests in the United States: a review. For Ecol Manag 114(2–3):173–197.  https://doi.org/10.1016/S0378-1127(98)00350-8 Google Scholar
  72. Reitalu T, Seppä H, Sugita S, Kangur M, Koff T, Avel E, Kihno K, Vassiljev J, Renssen H, Hammarlund D (2013) Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact. J Biogeogr 40:1524–1534.  https://doi.org/10.1111/jbi.12092 Google Scholar
  73. Reynolds KM (2005) Integrated decision support for sustainable forest management in the United States: Fact or fiction? Comput Electron Agric 49(1):6–23.  https://doi.org/10.1016/j.compag.2005.02.002 Google Scholar
  74. Reynolds KM, Twery MJ, Lexer MJ, Vacik H, Ray D, Shao G, Borges JG (2008) Decision support systems in natural resource management. In: Burstein F, Holsapple C (eds) Handbook on decision support systems, vol 2. International handbooks on information systems series, handbook on decision support system. Springer, Berlin, pp 499–534Google Scholar
  75. Rinaldi F, Jonsson R, Sallnäs O, Trubins R (2015) Behavioral modelling in a decision support system. Forests 6(2):311–327.  https://doi.org/10.3390/f6020311 Google Scholar
  76. Sathre R, O’Connor J (2010) Meta-analysis of greenhouse gas displacement factors of wood product substitution. Environ Sci Policy 13:104–114.  https://doi.org/10.1016/j.envsci.2009.12.005 Google Scholar
  77. Schumacher S, Bugmann H, Mladenoff DJ (2004) Improving the formulation of tree growth and succession in a spatially explicit landscape model. Ecol Model 180(1):175–194.  https://doi.org/10.1016/j.ecolmodel.2003.12.055 Google Scholar
  78. Seppelt R, Dormann CF, Eppink FV, Lautenbach S, Schmidt S (2011) A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. J Appl Ecol 48:630–636.  https://doi.org/10.1111/j.1365-2664.2010.01952.x Google Scholar
  79. Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol Bull 49:11–41Google Scholar
  80. Siitonen J, Ranius T (2015) The importance of veteran trees for saproxylic insects. In: Kirby KJ, Watkins C (eds) Europe’s changing woods and forests: from wildwood to managed landscapes. CABI Publishing, UK, pp 140–153Google Scholar
  81. Stokland JN, Eriksen R, Tomter SM, Korhonen K, Tomppo E, Rajaniemi S, Söderberg U, Toet H, Riis-Nielson T (2003) Forest biodiversity indicators in the Nordic countries: status based on national forest inventories. Nordic Council of Ministers, CopenhagenGoogle Scholar
  82. Syphard AD, Scheller RM, Ward BC, Spencer WD, Strittholt JR (2011) Simulating landscape-scale effects of fuels treatments in the Sierra Nevada, California, USA. Int J Wildland Fire 20(3):364–383.  https://doi.org/10.1071/WF09125 Google Scholar
  83. Twery MJ, Knopp PD, Thomasma SA, Rauscher HM, Nute DE, Potter WD, Maier F, Wang J, Dass M, Uchiyama H, Glende A, Hoffman RE (2005) NED-2: a decision support system for integrated forest ecosystem management. Comput Electron Agric 49(1):24–43.  https://doi.org/10.1016/j.compag.2005.03.001 Google Scholar
  84. United Nations (1992) Non-legally binding authoritative statement of principles for a global consensus on the management, conservation and sustainable development of all types of forests. United Nations, New YorkGoogle Scholar
  85. Vacik H, Lexer MJ (2014) Past, current and future drivers for the development of decision support systems in forest management. Scand J For Res 29:2–19.  https://doi.org/10.1080/02827581.2013.830768 Google Scholar
  86. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1):5–31.  https://doi.org/10.1007/s10584-011-0148-z Google Scholar
  87. van Vuuren D, Kriegler E, O’Neill B, Ebi K, Riahi K, Carter T, Edmonds J, Hallegatte S, Kram T, Mathur R, Winkler H (2014) A new scenario framework for climate change research: scenario matrix architecture. Clim Change 122(3):373–386.  https://doi.org/10.1007/s10584-013-0906-1 Google Scholar
  88. Vanderberg MR, Boston K, Bailey J (2011) Maximizing carbon storage in Appalachians: method for considering the risk if disturbance events. In: Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78. https://www.nrs.fs.fed.us/pubs/gtr/gtr-p-78papers/15vanderbergp78.pdf. Accessed 23 Nov 2017
  89. Vilén T, Fernandes PM (2011) Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning. Environ Manag 48:558–567.  https://doi.org/10.1007/s00267-011-9681-9 Google Scholar
  90. Wang WJ, He HS, Spetich M, Shifley SR, Thompson FR III, Larsen DR, Yang J (2013) A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data. Ecosphere.  https://doi.org/10.1890/ES13-00040.1 Google Scholar
  91. Winter S (2012) Forest naturalness assessment as a component of biodiversity monitoring and conservation management. Forestry 85(2):293–304.  https://doi.org/10.1093/forestry/cps004 Google Scholar
  92. Wolff S, Schulp C, Verburg P (2015) Mapping ecosystem services demand: a review of current research and future perspectives. Ecol Indic 55:159–171.  https://doi.org/10.1016/j.ecolind.2015.03.016 Google Scholar
  93. Wulf M, Rujner H (2011) A GIS-based method for the reconstruction of the late eighteenth century forest vegetation in the Prignitz region (NE Germany). Landsc Ecol 26:153–168.  https://doi.org/10.1007/s10980-010-9555-1 Google Scholar
  94. Yatskov M, Harmon ME, Krankina ON (2003) A chronosequence of wood decomposition in the boreal forests of Russia. Can J For Res 33(7):1211–1226.  https://doi.org/10.1139/x03-033 Google Scholar
  95. Zeng H, García-Gonzalo J, Peltola H, Kellomäki S (2010) The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem. Ann For Sci 67(1):111.  https://doi.org/10.1051/forest/2009090 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Eva-Maria Nordström
    • 1
    Email author
  • Maarten Nieuwenhuis
    • 2
    Email author
  • Emin Zeki Başkent
    • 3
  • Peter Biber
    • 4
  • Kevin Black
    • 2
  • Jose G. Borges
    • 5
  • Miguel N. Bugalho
    • 6
  • Giulia Corradini
    • 7
  • Edwin Corrigan
    • 2
  • Ljusk Ola Eriksson
    • 1
  • Adam Felton
    • 8
  • Nicklas Forsell
    • 9
  • Geerten Hengeveld
    • 10
  • Marjanke Hoogstra-Klein
    • 10
  • Anu Korosuo
    • 9
  • Matts Lindbladh
    • 8
  • Isak Lodin
    • 8
  • Anders Lundholm
    • 2
  • Marco Marto
    • 5
  • Mauro Masiero
    • 7
  • Gintautas Mozgeris
    • 11
  • Davide Pettenella
    • 7
  • Werner Poschenrieder
    • 4
  • Robert Sedmak
    • 12
    • 13
  • Jan Tucek
    • 12
  • Davide Zoccatelli
    • 7
    • 14
  1. 1.Department of Forest Resource ManagementSwedish University of Agricultural Sciences (SLU)UmeåSweden
  2. 2.UCD Forestry, School of Agriculture and Food ScienceUniversity College DublinBelfield, Dublin 4Ireland
  3. 3.Faculty of ForestryKaradeniz Technical UniversityTrabzonTurkey
  4. 4.Chair of Forest Growth and Yield Science, TUM School of Life Sciences WeihenstephanTechnical University of Munich (TUM)FreisingGermany
  5. 5.Forest Research Centre, School of AgricultureUniversity of LisbonLisbonPortugal
  6. 6.Centre for Applied Ecology (CEABN-InBIO), School of AgricultureUniversity of LisbonLisbonPortugal
  7. 7.TeESAF DepartmentUniversity of PadovaLegnaroItaly
  8. 8.Southern Swedish Forest Research CentreSwedish University of Agricultural Sciences (SLU)AlnarpSweden
  9. 9.Ecosystem Services and Management ProgramInternational Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  10. 10.Forest and Nature Conservation Policy GroupWageningen University and ResearchWageningenThe Netherlands
  11. 11.Institute of Forest Management and Wood ScienceAleksandras Stulginskis UniversityAkademijaLithuania
  12. 12.Department of Forest Management and GeodesyTechnical University in ZvolenZvolenSlovakia
  13. 13.Department of Forest ManagementCzech University of Life Sciences PraguePrague 6-SuchdolCzech Republic
  14. 14.Institute of Earth SciencesHebrew University of JerusalemJerusalemIsrael

Personalised recommendations