Advertisement

Seed dispersal capacity of Salix caprea L. assessed by seed trapping and parentage analysis

  • Katharina TiebelEmail author
  • Ludger Leinemann
  • Bernhard Hosius
  • Robert Schlicht
  • Nico Frischbier
  • Sven Wagner
Original Paper
  • 27 Downloads

Abstract

The natural regeneration of Salix caprea L. in disturbed forest areas is an important ecological phenomenon occurring during succession in temperate and boreal forests. Knowledge of the timing and extent of seed dispersal in goat willow is still rudimentary. We studied seed dispersal and genetic offspring relationships on five storm-disturbed forest sites (4–13 ha) at 715–900 m a.s.l. in the spruce-dominated Thuringian Forest over a 2-year period. The duration of the seed rain was 3 months in 2015, and only 6 weeks in spring 2016. The seed dispersal curve resembled a negative exponential function with a steep slope. The highest seed numbers of 23–156 n per trap occurred close to the base of the seed trees. Farther than 350 m from the seed trees, average numbers of 0.6–2.1 seeds per trap were recorded independent of dispersal distance, inclination, the number of seed sources and the dispersal direction. Trapped seed numbers at the study sites were quite similar within a given year, but differed significantly between years. Parentage analyses were carried out at one of the five study sites. One hundred saplings and all of the 20 potential parent trees located within a search zone distance of 500 m from the edge of the open area were analysed. Twenty-nine per cent of the saplings were assigned to one of the 20 parent trees. The longest confirmed seed dispersal distance was up to 800 m. Saplings showed a higher allelic variation than the 20 parent trees, therefore indicating external gene flow as well as long seed and pollen dispersal distances.

Keywords

Seed rain Goat willow Genetic diversity Pioneer trees Natural regeneration Disturbances 

Notes

Acknowledgements

The work carried out in this study was financially supported by scholarships granted to Katharina Tiebel by the foundations ‘Deutsche Bundesstiftung Umwelt’ (DBU) and ‘Graduiertenakademie’ (GA) of TU Dresden. It was also supported by Thüringen Forst, Forestry Research and Competence Center, Gotha, Germany. We would like to thank Sonja Gockel (Thuringian forest conversion project) and colleagues from Thüringen Forst for providing the study sites, and Anna-Victoria August, Antje Karge and Julia Möhring for field assistance. We thank David Butler Manning and Ulrike Hagemann for proofreading the text and the reviewers for the constructive criticism and suggestions which improve our paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Argus GW (2006) Guide to Salix (willow) in the Canadian Maritime Provinces (New Brunswick, Nova Scotia, and Prince Edward Island). E-Publishing, Ontario. http://accs.uaa.alaska.edu/files/botany/publications/2006/GuideSalixCanadianAtlanticMaritime.pdf. Accessed 10 Feb 2018
  2. Barker JHA, Pahlich A, Trybush S, Edwards KJ, Karp A (2003) Microsatellite markers for diverse Salix species. Mol Ecol Notes 3:4–6.  https://doi.org/10.1046/j.1471-8286.2003.00332.x CrossRefGoogle Scholar
  3. Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest Ecology, 4th edn. Wiley, New YorkGoogle Scholar
  4. Barsoum N (2002) Relative contributions of sexual and asexual regeneration strategies in Populus nigra and Salix alba during the first years of establishment on a braided gravel bed river. Evol Ecol 15:255–279.  https://doi.org/10.1023/A:1016028730129 CrossRefGoogle Scholar
  5. Bastide JP, van Vredenburch CLH (1970) The influence of weather conditions on the seed production of some forest trees in the Netherlands. Acta Bot Neerlandica 45:461–490Google Scholar
  6. Baum C, Leinweber P, Weih M, Lamersdorf N, Dimitriou I (2009) Effects of short rotation coppice with willows and poplar on soil ecology. Agric For Res 59:183–196.  https://doi.org/10.1007/s11104-009-9928-x Google Scholar
  7. Berger JO (1985) Statistical decision theory and Bayesian analysis, 2nd edn. Springer, New York.  https://doi.org/10.1007/978-1-4757-4286-2 CrossRefGoogle Scholar
  8. Bjorkbom JC (1971) Production and germination of paper birch seed and its dispersal into a forest opening. Northeastern Forest Experiment Station, Forest Service Research Paper NE-209, U.S. Department of Agriculture, Upper DarbyGoogle Scholar
  9. Boland JM (2014) Secondary dispersal of willow seeds: sailing on water into safe sites. Madroño 61(4):388–398.  https://doi.org/10.3120/0024-9637-61.4.388 CrossRefGoogle Scholar
  10. Brouwer W, Stählin A (1975) Handbuch der Samenkunde für Landwirtschaft. DLG-Verlags-GmbH, Frankfurt (Main), Gartenbau und ForstwirtschaftGoogle Scholar
  11. Brown PE (2015) Model-based geostatistics the easy way. J Stat Softw 63(12):1–24.  https://doi.org/10.18637/jss.v063.i12 CrossRefGoogle Scholar
  12. Bürger M (2003) Bodennahe Windverhältnisse und windrelevante Reliefstrukturen. In: Leibnitz-Institut für Länderkunde (ed) Nationalatlas Bundesrepublik Deutschland. Spektrum Akademischer Verlag, Heidelberg, pp 52–55Google Scholar
  13. Burse K-D, Schramm H-J, Geiling S, Meinhardt H, Schölch M (1997) Die forstlichen Wuchsbezirke Thüringens - Kurzbeschreibung. Mitteilungen der Landesanstalt für Wald und Forstwirtschaft, GothaGoogle Scholar
  14. Bushart M, Suck R (2008) Potenzielle natürliche Vegetation Thüringens. Schriftenr. der Thüringer Landesanstalt für Umwelt und Geologie, JenaGoogle Scholar
  15. Chantal M, Granström A (2007) Aggregations of dead wood after wildfire act as browsing refugia for seedlings of Populus tremula and Salix caprea. For Ecol Manag 250:3–8.  https://doi.org/10.1016/j.foreco.2007.03.035 CrossRefGoogle Scholar
  16. Chilès JP, Delfiner P (1999) Geostatistics: Modeling spatial uncertainty. Wiley, New YorkCrossRefGoogle Scholar
  17. Chmelar J, Meusel W (1986) Die Weiden Europas, 3rd edn. A. Ziemsen Verlag, WittenbergGoogle Scholar
  18. Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80:1475–1494.  https://doi.org/10.1890/0012-9658(1999)080%5b1475:SDNAFP%5d2.0.CO;2 CrossRefGoogle Scholar
  19. Cortés AJ, Waeber S, Lexer C, Sedlacek J, Wheeler JA, van Kleunen M, Bossdorf O, Hoch G, Rixen C, Wipf S, Karrenberg S (2014) Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity 113:233–239.  https://doi.org/10.1038/hdy.2014.19 CrossRefGoogle Scholar
  20. Densmore R, Zasada J (1983) Seed dispersal and dormancy patterns in northern willows: ecological and evolutionary significance. Can J Bot 61:3207–3216.  https://doi.org/10.1139/b83-358 CrossRefGoogle Scholar
  21. Dickmann DI, Kuzovkina J (2014) Poplars and willows of the world, with emphasis on silviculturally important species. In: Isebrands JG, Richardson J (eds) Poplars and Willows—Trees for society and the environment. FAO, Rome, pp 8–91CrossRefGoogle Scholar
  22. Dörken VM (2011) Salix caprea—Sal-Weide, Palm-Weide (Salicaceae). Jahrb Boch Bot Ver 2:253–257Google Scholar
  23. Dötterl S, Glück U, Jürgens A, Woodring J, Aas G (2014) Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS One 9:e93421.  https://doi.org/10.1371/journal.pone.0093421 CrossRefGoogle Scholar
  24. Fink AH, Brücher T, Ermert V, Krüger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9:405–423.  https://doi.org/10.5194/nhess-9-405-2009 CrossRefGoogle Scholar
  25. Fischer H, Huth F, Hagemann U, Wagner S (2016) Developing restoration strategies for temperate forests using natural regeneration processes. In: Stanturf JA (ed) Restoration of Boreal and Temperate Forests. CRC Press, Boca Raton, pp 103–164Google Scholar
  26. Frischbier N, Profft I, Hagemann U (2014) Potential impacts of climate change on forest habitats in the Biosphere Reserve Vessertal-Thuringian Forest in Germany. In: Rannow S, Neubert M (eds) Managing protected areas in Central and Eastern Europe under climate change, Advances in Global Change Research. Springer, Dordrecht, pp 243–257.  https://doi.org/10.1007/978-94-007-7960-0_16 Google Scholar
  27. Füssel U (2007) Floral scent in Salix L. and the role of olfactory and visual cues for pollinator attraction of Salix caprea L. Dissertation, University of BayreuthGoogle Scholar
  28. Gage EA, Cooper DJ (2005) Patterns of willow seed dispersal, seed entrapment, and seedling establishment in a heavily browsed montane riparian ecosystem. Can J Bot 83:678–687.  https://doi.org/10.1139/B05-042 CrossRefGoogle Scholar
  29. Gauer J, Aldinger E (2005) Waldökologische Naturräume Deutschlands: Forstliche Wuchsgebiete und Wuchsbezirke—mit Karte 1:1.000.000, Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung, StuttgartGoogle Scholar
  30. Greene DF, Johnson EA (1996) Wind dispersal of seeds from a forest into a clearing. Ecology 77:595–609.  https://doi.org/10.2307/2265633 CrossRefGoogle Scholar
  31. Hanley SJ, Mallott MD, Karp A (2006) Alignment of a Salix linkage map to the Populus genomic sequence reveals macrosynteny between willow and poplar genomes. Tree Genet. Genomes 3:35–48.  https://doi.org/10.1007/s11295-006-0049-x CrossRefGoogle Scholar
  32. Harper JL (1977) Population biology of plants. Academic Press, New YorkGoogle Scholar
  33. Herrera CM, Jordano P, Guitián J, Traveset A (1998) Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am Nat 152:576–594.  https://doi.org/10.1086/286191 CrossRefGoogle Scholar
  34. Horvat-Marolt S (1974) Pionirski gozd in iva kot Pionirska drevesna Vrsta II. del - Konkurenčna moč ive (S. caprea) kot pionirja v pedosferi (Pioneer forest and sallow (Salix caprea) as a pioneer tree species II. Competitive strength of the sallow as a pioneer in the pedosphere). Zb Gozdarstva Lesar 12:5–40Google Scholar
  35. Hoshikawa T, Nagamitsu T, Tomaru N (2012) Effects of pollen availability on pollen immigration and pollen donor diversity in riparian dioecious trees (Salix arbutifolia). Botany 90:481–489.  https://doi.org/10.1139/B2012-021 CrossRefGoogle Scholar
  36. Houle G (1998) Seed dispersal and seedling recruitment of Betula alleghaniensis: spatial inconsistency in time. Ecology 79:807–818.  https://doi.org/10.1890/0012-9658(1998)079%5b0807:SDASRO%5d2.0.CO;2 CrossRefGoogle Scholar
  37. Hughes JW, Fahey TJ (1988) Seed dispersal and colonization in a disturbed northern hardwood forest. Bull Torrey Bot Club 115(2):89–99CrossRefGoogle Scholar
  38. Huth F (2009) Untersuchungen zur Verjüngungsökologie der Sand-Birke (Betula pendula Roth). University of TU-Dresden, PhD-ThesisGoogle Scholar
  39. Imbert E, Lefèvre F (2003) Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J Ecol 91:447–456.  https://doi.org/10.1046/j.1365-2745.2003.00772.x CrossRefGoogle Scholar
  40. Junttila O (1976) Seed germination and viability in five Salix species. Astarte 9:19–24Google Scholar
  41. Karlsson M (2001) Natural regeneration of broadleaved tree species in southern Sweden: effects of silvicultural treatments and seed dispersal from surrounding stands. Dissertation, Swedish University of Agricultural scienceGoogle Scholar
  42. Karrenberg S, Suter M (2003) Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. Am J Bot 90:749–754.  https://doi.org/10.3732/ajb.90.5.749 CrossRefGoogle Scholar
  43. Karrenberg S, Kollmann J, Edwards PJ (2002) Pollen vectors and inflorescence morphology in four species of Salix. Plant Syst Evol 235:181–188.  https://doi.org/10.1007/s00606-002-0231-z CrossRefGoogle Scholar
  44. Kay QON (1985) Nectar from willow catkins as a food source for Blue Tits. Bird Study 32:40–44.  https://doi.org/10.1080/00063658509476853 CrossRefGoogle Scholar
  45. Kelly D (1994) The evolutionary ecology of mast seeding. Tree 9:465–470Google Scholar
  46. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst 33:427–447.  https://doi.org/10.1146/annurev.ecolsys.33.020602.095433 CrossRefGoogle Scholar
  47. Kikuchi S, Suzuki W, Sashimura N (2011) Gene flow in an endangered willow Salix hukaoana (Salicaceae) in natural and fragmented riparian landscapes. Conserv Genet 12:79–89.  https://doi.org/10.1007/s10592-009-9992-z CrossRefGoogle Scholar
  48. Kohlermann L (1950) Untersuchungen über die Windverbreitung der Früchte und Samen mitteleuropäischer Waldbäume. Forstwiss Cent 69:606–624.  https://doi.org/10.1007/BF01815738 CrossRefGoogle Scholar
  49. Kollmann J, Goetze D (1998) Notes on seed traps in terrestrial plant communities. Flora 193:31–40.  https://doi.org/10.1016/S0367-2530(17)30813-7 CrossRefGoogle Scholar
  50. Kolodziej A, Frühauf M (2008) Phänologische Veränderungen wild wachsender Pflanzen in Sachsen-Anhalt 1962-2005. Hercynia NF 41:23–37Google Scholar
  51. Küßner R (1997) Sukzessionale Prozesse in Fichtenbeständen (Picea abies) des Osterzgebirges: Möglichkeiten ihrer waldbaulichen Beeinflussung und ihrer Bedeutung für einen ökologisch begründeten Waldumbau. Forstwiss Cent 116:359–369CrossRefGoogle Scholar
  52. Kuzovkina YA, Quigley MF (2005) Willows beyond wetlands: uses of Salix L. species for environmental projects. Water Air Soil Pollut 162:183–204.  https://doi.org/10.1007/s11270-005-6272-5 CrossRefGoogle Scholar
  53. Lautenschlager D (1994) Die Weiden von Mittel- und Nordeuropa, überarbeitete edn. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  54. Leder B (1992) Weichlaubhölzer: Verjüngungsökologie, Jugendwachstum und Bedeutung in Jungbeständen der Hauptbaumarten Buchen und Eiche, Schriftenreihe der Landesanstalt für Forstwissenschaft Nordrhein-WestfalenGoogle Scholar
  55. Matlack GR (1989) Dispersal of seed across snow in Betula lenta, a gap-colonizing tree species. J Ecol 77:853–869.  https://doi.org/10.2307/2260990 CrossRefGoogle Scholar
  56. McVean DN (1953) Alnus glutinosa (L.) Gaertn. J Ecol 41:447–466.  https://doi.org/10.2307/2257070 CrossRefGoogle Scholar
  57. McVean DN (1956) Ecology of Alnus glutinosa (L.) Gaertn: VI. Post-Glacial History. J Ecol 44:331–333.  https://doi.org/10.2307/2256825 CrossRefGoogle Scholar
  58. Mihók B, Gálhidy L, Kelemen K, Standovár T (2005) Study of gap-phase regeneration in a managed beech forest: relations between tree regeneration and light, substrate features and cover of ground vegetation. Acta Silv Lignaria Hung 1:25–38Google Scholar
  59. Moon K, Duff TJ, Tolhurst KG (2013) Characterising forest wind profiles for utilisation in fire spread models. In: Piantadosi J, Anderssen RS, Boland J (eds) MODSIM2013, Modelling and simulation society of Australia and New Zealand. Presented at the 20th International Congress on Modelling and Simulation, Adelaide, Australia, pp 214–220Google Scholar
  60. Mosseler A, Papadopol CS (1989) Seasonal isolation as a reproductive barrier among sympatric Salix species. Can J Bot 67:2563–2570.  https://doi.org/10.1139/b89-331 CrossRefGoogle Scholar
  61. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Tree 15:278–285.  https://doi.org/10.1016/S0169-5347(00)01874-7 Google Scholar
  62. Nei M (1972) Genetic distance between populations. Am Nat 106:283–392CrossRefGoogle Scholar
  63. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590Google Scholar
  64. Niiyama K (1990) The role of seed dispersal and seedling traits in colonization and coexistence of Salix species in a seasonally flooded habitat. Ecol Res 5:317–331.  https://doi.org/10.1007/BF02347007 CrossRefGoogle Scholar
  65. Ojango JM, Mpofu N, Marshall K, Andersson-Eklun L (2011) Quantitative methods to improve the understanding and utilisation of animal genetic resources. In: Ojango JM, Malmfors B, Okeyo AM (eds) Animal genetics training resource, Version 3. International Livestock Research Institute, Nairobi, Kenya, and Swedish University of Agricultural Sciences, Uppsala, Sweden, pp 1–39Google Scholar
  66. Okubo A, Levin SA (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70:329–338.  https://doi.org/10.2307/1937537 CrossRefGoogle Scholar
  67. Palmé AE, Semerikov V, Lascoux M (2003) Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91:465–474.  https://doi.org/10.1038/sj.hdy.6800307 CrossRefGoogle Scholar
  68. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  69. Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For. Ecol. Manag. 32:1–38.  https://doi.org/10.1016/0378-1127(90)90104-J CrossRefGoogle Scholar
  70. Perdereau AC, Kelleher CT, Douglas GC, Hodkinson TR (2014) High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. Plant Biol 14:1–12.  https://doi.org/10.1186/s12870-014-0202-x Google Scholar
  71. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701.  https://doi.org/10.1111/j.1365-294X.2004.02410.x CrossRefGoogle Scholar
  72. Regvar M, Likar M, Piltaver A, Kugonic N, Smith JE (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356.  https://doi.org/10.1007/s11104-009-0207-7 CrossRefGoogle Scholar
  73. Ribbens E, Silander JA Jr, Pacala SW (1994) Seedling recruitment in forest: calibrating models to predict patterns of tree seedling dispersion. Ecology 75:1794–1806.  https://doi.org/10.2307/1939638 CrossRefGoogle Scholar
  74. Richardson J, Isebrands JG, Ball JB (2014) Ecology and physiology of poplars and willows. In: Richardson J (ed) Isebrands JG. Trees for Society and the Environment, Poplars and Willows, pp 92–123Google Scholar
  75. Robert CP (2007) The Bayesian choice: from decision-theoretic foundations to computational implementation, 2nd edn. Springer, New York.  https://doi.org/10.1007/0-387-71599-1 Google Scholar
  76. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Statist. Soc. B 71:319–392.  https://doi.org/10.1111/j.1467-9868.2008.00700.x CrossRefGoogle Scholar
  77. Ryvarden L (1971) Studies in seed dispersal I. Trapping of diaspores in the alpine zone at Finse, Norway. Nor J Bot 18:215–226Google Scholar
  78. Sacchi CF, Price PW (1992) The relative roles of abiotic and biotic factors in seedling demography of arroyo willow (Salix lasiolepis: Salicaceae). Am J Bot 79:395–405.  https://doi.org/10.1002/j.1537-2197.1992.tb14566.x CrossRefGoogle Scholar
  79. Sarvas R (1952) On the flowering of birch and the quality of seed crop. Commun Inst For Fenn 40:1–35Google Scholar
  80. Scheffler A, Frühauf M (2011) Veränderungen der Pflanzenphänologie in unterschiedlichen Naturräumen Sachsen-Anhalts unter Berücksichtigung ihrer wesentlichen Einflussfaktoren. Hercynia NF 44:169–189Google Scholar
  81. Schirmer R (2006) Salix alba Linné. In: Schütt P, Weisberger H, Schuck HJ, Lang U, Stimm B (eds) Enzyklopädie Der Laubbäume. Nikol Verlagsgesellschaft mbH & Co KG, Hamburg, pp 535–550Google Scholar
  82. Schmiedel D, Huth F, Wagner S (2013) Using data from seed-dispersal modelling to manage invasive tree species: the example of Fraxinus pennsylvanica Marshall in Europe. Environ Manag 52:851–860.  https://doi.org/10.1007/s00267-013-0135-4 CrossRefGoogle Scholar
  83. Schütt P (2006) Salix caprea LINNÉ, 1753. In: Schütt P, Weisberger H, Schuck HJ, Lang U, Stimm B (eds) Enzyklopädie Der Laubbäume. Nikol Verlagsgesellschaft mbH & Co., KG, Hamburg, pp 551–558Google Scholar
  84. Seiwa K, Tozawa M, Ueno N, Kimura M, Yamasaki M, Maruyama K (2008) Roles of cottony hairs in directed seed dispersal in riparian willows. Plant Ecol 198:27–35.  https://doi.org/10.1007/s11258-007-9382-x CrossRefGoogle Scholar
  85. Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH (2017) Penalising model component complexity: a principled, practical approach to constructing priors. Stat Sci 32:1–28.  https://doi.org/10.1214/16-STS576 CrossRefGoogle Scholar
  86. Skarpaas O, Auhl R, Shea K (2006) Environmental variability and the initiation of dispersal: turbulence strongly increases seed release. Proc Biol Sci 273:751–756.  https://doi.org/10.1098/rspb.2005.3366 CrossRefGoogle Scholar
  87. Skvortsov AK (1999) Willows of Russia and adjacent countries—taxonomical and geographical revision, University of Joensuu, Faculty of mathematics and natural sciences report series. FinlandGoogle Scholar
  88. Stoyan D, Wagner S (2001) Estimating the fruit dispersion of anemochorous forest trees. Ecol Model 145:35–47.  https://doi.org/10.1016/S0304-3800(01)00385-4 CrossRefGoogle Scholar
  89. Trybush SO, Jahodová Š, Čížková L, Karp A, Hanley SJ (2012) High levels of genetic diversity in Salix viminalis of the Czech Republic as revealed by microsatellite markers. Bioenergy Res. 5:969–977.  https://doi.org/10.1007/s12155-012-9212-4 CrossRefGoogle Scholar
  90. van Splunder I, Coops H, Voesenek LACJ (1995) Establishment of alluvial forest species in floodplains: the role of dispersal timing, germination characteristics and water level fluctuations. Acta Bot Neerlandica 44:269–278.  https://doi.org/10.1111/j.1438-8677.1995.tb00785.x CrossRefGoogle Scholar
  91. Vroege PW, Stelleman P (1990) Insect and wind pollination in Salix repens L. and Salix caprea L. Isr J Bot 39:125–132.  https://doi.org/10.1080/0021213X.1990.10677137 Google Scholar
  92. Waesch G (2003) Montane Graslandvegetationen des Thüringer Waldes: Aktueller Zustand, historische Analyse und Entwicklungsmöglichkeiten, 1st edn. Cuvillier Verlag, GöttingenGoogle Scholar
  93. Wagner S (1997) Ein Modell zur Fruchtausbreitung der Esche (Fraxinus excelsior L.) unter Berücksichtigung von Richtungseffekten. Allg. Forst- Jagdztg. 168:149–155Google Scholar
  94. Wagner S, Wälder K, Ribbens E, Zeibig A (2004) Directionality in fruit dispersal models for anemochorous forest trees. Ecol Model 179:487–498.  https://doi.org/10.1016/j.ecolmodel.2004.02.020 CrossRefGoogle Scholar
  95. Werner P (1975) A seed trap for determining patterns of seed deposition in terrestrial plants. Can J Bot 53:810–813.  https://doi.org/10.1139/b75-097 CrossRefGoogle Scholar
  96. Worrell R (1995) European aspen (Populus tremula L.): a review with particular reference to Scotland I. Distribution, ecology and genetic variation. Forestry 68:93–105.  https://doi.org/10.1093/forestry/68.2.93 CrossRefGoogle Scholar
  97. Young JA, Clements CD (2003) Seed germination of willow species from a desert riparian ecosystem. J Range Manag 56:496–500.  https://doi.org/10.2307/4003842 CrossRefGoogle Scholar
  98. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  99. Zasada JC, Densmore R (1979) A trap to measure Populus and Salix seedfall. Can Field-Nat 93:77–79Google Scholar
  100. Zerbe S (2009) Renaturierung von Waldökosystemen. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, pp 153–182Google Scholar
  101. Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234.  https://doi.org/10.3354/cr00822 CrossRefGoogle Scholar
  102. Żywiec M, Ledwoń M (2008) Spatial and temporal patterns of rowan (Sorbus aucuparia L.) regeneration in West Carpathian subalpine spruce forest. Plant Ecol 194:283–291.  https://doi.org/10.1007/s11258-007-9291-z Google Scholar
  103. Żywiec M, Holeksa J, Wesołowska M, Szewczyk J, Zwijacz-Kozica T, Kapusta P, Bruun HH (2013) Sorbus aucuparia regeneration in a coarse-grained spruce forest—a landscape scale. J Veg Sci 24:735–743.  https://doi.org/10.1111/j.1654-1103.2012.01493.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Silviculture, Institute of Silviculture and Forest ProtectionTU DresdenTharandtGermany
  2. 2.Institute of Genetics and Forest Tree BreedingISOGENGöttingenGermany
  3. 3.Chair of Forest Biometrics and Forest Systems Analysis, Institute of Forest Growth and Forest Computer SciencesTU DresdenTharandtGermany
  4. 4.Forestry Research and Competence CenterThüringen ForstGothaGermany

Personalised recommendations