European Journal of Forest Research

, Volume 138, Issue 3, pp 445–460 | Cite as

Site and age-dependent responses of Picea abies growth to climate variability

  • Petr ČermákEmail author
  • Michal Rybníček
  • Tomáš Žid
  • Arne Steffenrem
  • Tomáš Kolář
Original Paper


Knowledge about spatiotemporal variability of climate change effect on tree-ring width (TRW) and crown condition is essential to optimize the modelling of future forest ecosystem responses to the changing climate. Geographical differences in the climate–growth relationship are a reflection of the regional climatic conditions mainly. In this study, 175 Picea abies trees from the north-western edge of its geographical distribution in Central Norway were evaluated with respect to geographical and age-dependent differences during the common period of 1950–2015. The results showed that the most significant positive correlations between TRW and the current June temperature were unstable although the temperature increased. The correlations suddenly started to decrease (regardless of the site placement and tree age) at the beginning of the 1990s, but subsequently unexpectedly increased in the 2010s. The superposed epoch analysis revealed longer TRW regeneration of the southern plots (except over-mature trees) after negative pointer years compared to the northern plots. Previous summer temperature and related physiological processes (cone crops, storage of nutrients, etc.) significantly negatively affected P. abies growth in the current year. Additionally, our results showed that the selection of the chronology version (standard or residual) significantly affects the resulting correlations and thus must be carefully considered in dendroclimatological studies. Our main outputs can contribute to better understanding of the climate–growth relationship variability and general prediction of the radial growth.


Tree-ring width Temperature Precipitation Boreal forest Norway spruce 



The paper was supported by the EEA Grants project “Frameworks and possibilities of forest adaptation measures and strategies connected with climate change” (No. EHP-CZ02-OV-1-019-2014) and the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPUI), Grant Number LO1415.

Supplementary material

10342_2019_1182_MOESM1_ESM.tif (2.7 mb)
Fig. S1 Spatial correlations between climate data (temperature upper figures, precipitation lower figures) from CRU database (TS4.0; 63°–66.5°N, 10°–15°E, dry land) and local climate stations for the common 1981–2010 period. The climate stations representing the study area include: (a), (d) Susendal (northern part of the study area); (b), (e) Harran (central part) and (c), (f) Namdal (southern part). Light green dots refer to climate stations, and light blue dots indicate the study plots (TIFF 2753 kb)
10342_2019_1182_MOESM2_ESM.tif (777 kb)
Fig. S2 Superposed epoch analysis of the indexed tree-ring width sub-chronologies relative to calculated negative pointer years. Significant values at p < 0.01 are indicated by full black circle. The 95% confidence interval is shown in grey shading (TIFF 777 kb)


  1. Andreassen K, Solberg S, Tveito OA, Lystad SL (2006) Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For Ecol Manag 222(1–3):211–221. CrossRefGoogle Scholar
  2. Applequist MB (1958) A simple pith locator for use with off-centre increment cores. J For 56:141Google Scholar
  3. Babst F, Carrer M, Poulter B, Urbinati C, Neuwirth B, Frank D (2012) 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ Res Lett 7:045705. CrossRefGoogle Scholar
  4. Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree-Ring Bull 33:7–14Google Scholar
  5. Bauer E, Claussen M, Brovkin V (2003) Assessing climate forcings of the Earth system for the past millennium. Geophys Res Lett. CrossRefGoogle Scholar
  6. Biondi F, Waikul K (2004) DendroClim2002: a C++ program for statistical calibration of climate signals in tree ring chronologies. Comput Geosci 30:303–311. CrossRefGoogle Scholar
  7. Bošeľa M, Sedmák R, Marušák R, Sedmáková D, Petráš R, Barna M (2014) Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe. Geochronometria 41(2):136–146. CrossRefGoogle Scholar
  8. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682CrossRefGoogle Scholar
  9. Büntgen U, Frank DC, Schmidhalter M, Neuwirth B, Seifert M, Esper J (2006) Growth/climate response shift in a long subalpine spruce chronology. Trees Struct Funct 20:99–110. CrossRefGoogle Scholar
  10. Büntgen U, Brázdil R, Dobrovolný P, Trnka M, Kyncl T (2011) Five centuries of Southern Moravian drought variations revealed from living and historic tree rings. Theor Appl Climatol 105(1–2):167–180. CrossRefGoogle Scholar
  11. Büntgen U, Kyncl T, Ginzler Ch, Jacks DS, Esper J, Tegel W, Heussner K-U, Kyncl J (2013) Filling the Eastern European gap in millennium-long temperature reconstructions. PNAS 110(5):1773–1778. CrossRefPubMedGoogle Scholar
  12. Buras A, van der Maaten-Theunissen M, van der Maaten E, Ahlgrimm S, Hermann P, Simard S, Heinrich I, Helle G, Unterseher M, Schnittler M, Eusemann P, Wilmking M (2016) Tuning the voices of a choir: detecting ecological gradients in time-series populations. PloS ONE 11(7):e0158346. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buras A, Spyt B, Janecka K, Kaczka R (2018) Divergent growth of Norway spruce on Babia Góra Mountain in the western Carpathians. Dendrochronologia 50:33–43. CrossRefGoogle Scholar
  14. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740. CrossRefGoogle Scholar
  15. Čermák P, Rybníček M, Žid T, Andreasssen K, Børja I, Kolář T (2017) Impact of climate change on growth dynamics of Norway spruce in south-eastern Norway. Silva Fenn 51(2):16. CrossRefGoogle Scholar
  16. Cienciala E, Tumajer J, Zatloukal V, Beranová J, Holá Š, Hůnová I, Russ R (2017) Recent spruce decline with biotic pathogen infestation as a result of interacting climate, deposition and soil variables. Eur J For Res 136:307–317. CrossRefGoogle Scholar
  17. Cienciala E, Altman J, Doležal J, Kopáček J, Štěpánek P, Ståhl G, Tumajer J (2018) Increased spruce tree growth in Central Europe since 1960s. Sci Total Environ 619–620:1637–1647. CrossRefPubMedGoogle Scholar
  18. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in environmental science. Kluwer, Dordrecht, pp 104–123CrossRefGoogle Scholar
  19. Cook ER, Krusic PJ (2005). ARSTAN v. 41d: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USAGoogle Scholar
  20. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. CrossRefGoogle Scholar
  21. Cudlín P, Novotný R, Moravec I, Chmelíková E (2001) Retrospective evaluation of the response of montane forest ecosystems to multiple stress. Ekológia 20:108–124Google Scholar
  22. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305. CrossRefGoogle Scholar
  23. Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204. CrossRefGoogle Scholar
  24. Deslauriers A, Caron L, Rossi S (2015) Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir. Front Plant Sci 6:338. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ding H, Pretzsch H, Schütze G, Rötzer T (2017) Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands. Plant Biol 19(5):709–719. CrossRefPubMedGoogle Scholar
  26. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333. CrossRefGoogle Scholar
  27. Eckstein D, Bauch J (1969) Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwiss Centralblatt 88:230–250CrossRefGoogle Scholar
  28. Eichhorn J, Roskams P, Ferretti M, Mues V, Szepesi A, Durrant D (2010) Visual assessment of crown condition and damaging agents. Manual Part IV. In: Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinating Centre, Hamburg. ISBN: 978-3-926301-03-1. Accessed May 2010
  29. EUFORGEN (2009) Distribution map of Norway spruce (Picea abies). Accessed 24 July 2008
  30. Foster JR, Finley AO, D’Amato AW, Bradford JB, Banerjee S (2016) Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition, or climate response most important? Glob Change Biol 22(6):2138–2151. CrossRefGoogle Scholar
  31. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in central-west Germany. Trees Struct Funct 23:729–739CrossRefGoogle Scholar
  32. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  33. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57(2):205–221Google Scholar
  34. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. CrossRefGoogle Scholar
  35. Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60:119–132. CrossRefGoogle Scholar
  36. Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79:239–254. CrossRefGoogle Scholar
  37. Hofgaard A, Ols C, Drobyshev I, Kirchhefer AJ, Sandberg S, Söderström L (2018) Non-stationary response of tree growth to climate trends along the Arctic margin. Ecosystems. CrossRefGoogle Scholar
  38. Hollstein E (1980) Mitteleuropäische Eichenchronologie. Triererdendrochronologische Forschungen zur Archäologie und Kunstgeschichte. Trierer Grabungen und Forschungen, Mainz am RheinGoogle Scholar
  39. Holmsgaard E, Bang C (1989) Loss of volume increment due to cone production in Norway spruce. Det forstlige Forsøgsvæsen i Danmark 42:215–231Google Scholar
  40. IPCC (2014) Climate change 2007: the physical science basis. Technical report. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Ambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  41. Juntunen V, Neuvonen S (2006) Natural regeneration of Scots Pine and Norway spruce close to the timberline in northern Finland. Silva Fenn 40(3):443–458. CrossRefGoogle Scholar
  42. Karl T, Arquez A, Huang B, Lawrimore JH, McMahon JR (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472. CrossRefPubMedGoogle Scholar
  43. Kienast F, Schweingruber FH, Bräker OU, Schär E (1987) Tree ring studies on conifers along ecological gradients and the potential of single-year analyses. Can J For Res 17:683–696. CrossRefGoogle Scholar
  44. Kivinen S, Rasmus S, Jylhä K, Laapas M (2017) Long-term climate trends and extreme events in Northern Fennoscandia (1914–2013). Climate 5:16. CrossRefGoogle Scholar
  45. Kolář T, Čermák P, Oulehle F, Trnka M, Štěpánek P, Cudlín P, Hruška J, Büntgen U, Rybníček M (2015) Pollution control enhanced spruce growth in the “Black Triangle” near the Czech-Polish border. Sci Total Environ 538:703–711. CrossRefPubMedGoogle Scholar
  46. Kolář T, Čermák P, Trnka M, Žid T, Rybníček M (2017) Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol 239:24–33. CrossRefGoogle Scholar
  47. Konter O, Büntgen U, Carrer M, Timonen M, Esper J (2016) Climate signal age effects in boreal tree-rings: lessons to be learned for paleoclimatic reconstructions. Quat Sci Rev 142:164–172. CrossRefGoogle Scholar
  48. Kullman L (1996) Recent cooling and recession of Norway spruce [Picea abies (L.) Karst.] in the forest-alpine tundra ecotone of the Swedish Scandes. J Biogeogr 23:843–854. CrossRefGoogle Scholar
  49. Linares JC, Taïqui L, Sangüesa-Barreda G, Seco JI, Camarero JJ (2013) Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 31:88–96. CrossRefGoogle Scholar
  50. Lindholm M, Lehtonen H, Kolström T, Meriläinen J, Eronen M, Timonen M (2000) Climatic signals extracted from ring-width chronologies of scots pines from the northern, middle and southern parts of the boreal forest belt in Finland. Silva Fenn 34(4):317–330. CrossRefGoogle Scholar
  51. Lyu L, Suvanto S, Nöjd P, Henttonen HM, Mäkinen H, Zhang Q (2017) Tree growth and its climate signal along latitudinal and altitudinal gradients: comparison of tree rings between Finland and Tibetan Plateau. Biogeoscience 14(12):3083–3095. CrossRefGoogle Scholar
  52. Mäkinen H, Nöjd P, Mielikäinen K (2001) Climatic signal in annual growth variation in damaged and healthy stands of Norway spruce [Picea abies (L.) Karst.] in southern Finland. Trees 15(3):177–185. CrossRefGoogle Scholar
  53. Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2003) Large-scale climatic variability and radial increment variation Picea abies (L.) Karst. in central and northern Europe. Trees Struct Funct 17:173–184. CrossRefGoogle Scholar
  54. McMillan AMS, Winston GC, Goulden ML (2008) Age-dependent response of boreal forest to temperature and rainfall variability. Glob Change Biol 14:1904–1916. CrossRefGoogle Scholar
  55. Mencuccini M, Piussi P (1995) Production of seeds and cones and consequences for wood radial increment in Norway spruce (Picea abies (L.) Karst.). G Bot Ital 129:797–812CrossRefGoogle Scholar
  56. Mencuccini M, Martínez-Vilalt J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190. CrossRefGoogle Scholar
  57. Mencuccini M, Martínez-Vilalta J, Hamid HA, Korakaki E, Vanderklein D (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463–473. CrossRefGoogle Scholar
  58. Michel A, Seidling W (eds) (2016) Forest condition in Europe: 2016 technical report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). BFWDokumentation 23/2016. BFW Austrian Research Centre for Forests, ViennaGoogle Scholar
  59. Miina J (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Model 132:259–273. CrossRefGoogle Scholar
  60. Ponocná T, Spyt B, Kaczka R, Büntgen U, Treml V (2016) Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees Struct Funct 30(5):633–1646. CrossRefGoogle Scholar
  61. Pretzsch H, Schütze G, Biber P (2018) Drought can favour the growth of small in relation to tall trees in mature stands of Norway spruce and European beech. For Ecosyst 5:20. CrossRefGoogle Scholar
  62. Primicia I, Camarero JJ, Janda P, Čada V, Morrissey RC, Trotsiuk V, Bače R, Teodosiu M, Svoboda M (2015) Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For Ecol Manag 354:77–86. CrossRefGoogle Scholar
  63. Rivas-Martínez S, Penas A, Díaz TE (2004) Bioclimatic map of Europe, bioclimates. Cartographic Service, University of Léon, Spain. Accessed 15 July 2004
  64. Rosner S, Gierlinger N, Klepsch M, Karlsson B, Evans R, Lundqvist SO, Svĕtlík J, Børja I, Dalsgaard L, Andreassen K, Solberg S, Jansen S (2018) Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia. For Ecol Manag 409:527–540. CrossRefGoogle Scholar
  65. Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208. CrossRefGoogle Scholar
  66. Rozas V, DeSoto L, Olano JM (2009) Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182(3):687–697. CrossRefGoogle Scholar
  67. Rybníček M, Gryc V, Vavrčík H, Horáček P (2007) Annual ring analysis of the root system of Scots pine. Wood Res Slovakia 52(3):1–14Google Scholar
  68. Rybníček M, Čermák P, Kolář T, Přemyslovská E, Žid T (2009) Influence of temperatures and precipitation on radial increment of Orlické hory Mts. spruce stands at altitudes over 800 m a.s.l. J For Sci 55(6):257–263CrossRefGoogle Scholar
  69. Rybníček M, Čermák P, Hadaš P, Kolář T, Žid T (2012a) Dendrochronological analysis and habitual stress diagnostic assessment of Norway spruce (Picea abies) stands in the Drahany Highlands. Wood Res 57(2):189–206. CrossRefGoogle Scholar
  70. Rybníček M, Čermák P, Žid T, Kolář T (2012b) Growth responses of Picea abies to climate in the Central Part of the Českomoravská Upland (Czech Republic). Dendrobiology 68(1):21–30Google Scholar
  71. Seidling W, Mues V (2005) Statistical and geostatistical modelling of preliminarily adjusted defoliation on an European scale. Environ Monit Assess 101:223–247. CrossRefPubMedGoogle Scholar
  72. Selås V, Piovesan G, Adams JM, Bernabei M (2002) Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can J For Res 32(2):217–225. CrossRefGoogle Scholar
  73. Sellers PJ, Hall FH, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson J, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald DT, Jarvis PJ, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: experiment overview, scientific results, and future directions. J Geophys Res 102(24):28731–28769. CrossRefGoogle Scholar
  74. Sidor CG, Popa I, Vlad R, Cherubini P (2015) Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees Struct Funct 29(4):985–997. CrossRefGoogle Scholar
  75. Solberg BØ, Hofgaard A, Hytteborn H (2002) Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th century, central Norway. Écoscience 9(1):79–88. CrossRefGoogle Scholar
  76. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating, 2 edn. University of Arizona Press. ISBN-10: 0816516804Google Scholar
  77. Strand L (ed) (1997) Monitoring the environmental quality of Nordic Forests. Nordic Council of MinistersGoogle Scholar
  78. Tveite B (1987) Air pollution and forest damage in Norway. In: Hutchinson TC, Meema KM (eds) Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. NATO ASI Series (Series G: Ecological Sciences), vol 16. Springer, Berlin.
  79. Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. CrossRefGoogle Scholar
  80. Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Karlsson GP, Žlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos A-J, Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Napa U, Lachmanová Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374. CrossRefGoogle Scholar
  81. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol Clim 23:201–213CrossRefGoogle Scholar
  82. Wilmking M, D’Arrigo RD, Jacoby GC, Juday GP (2005) Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophys Res Lett 32:L15715. CrossRefGoogle Scholar
  83. Wright RF, Rudi G, Frogner T, Håøya A-O, Cosby BJ, Esser JM (1992) Map of critical loads for coniferous forest soils in Norway. NIVA—Report, Norwegian Forest Research Institute, Norwegian Institute for Water Research and Norwegian Institute for Land Inventory, Accessed December 1992

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  2. 2.Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
  3. 3.Norwegian Institute of Bioeconomy Research (NIBIO)ÅsNorway

Personalised recommendations