Advertisement

Analyzing effects of intra- and interspecific competition on timber quality attributes of Fagus sylvatica L.—from quality assessments on standing trees to sawn boards

  • Kirsten HöwlerEmail author
  • Torsten Vor
  • Dominik Seidel
  • Peter Annighöfer
  • Christian Ammer
Original Paper
  • 16 Downloads

Abstract

Timber quality is the main driver of timber prices and is strongly influenced by the competition a tree experiences until its day of harvest. Regulating competition is an integral part of silviculture, and therefore, deeper understanding of the competitor’s influence on timber quality is important. Since mixed forest stands and the share of broadleaved tree species have increased in the recent past because of a changed forest policy in several countries, effects of mixture types on timber quality are of increasing importance. In this study, we investigated the effects of intra- and interspecific competition on the internal timber quality of European beech (Fagus sylvatica L.). To analyze the effects of competition intensity and competitor species identity on the timber quality of 82 target beech trees, three different approaches were used: terrestrial laser scanning (TLS), a quality assessment on the standing tree by local district foresters, and a quality assessment of the sawn wood (boards) after harvesting. We investigated the relationship between external and internal quality features and additionally compared the different approaches to assess quality. We found that the present competitive situation was partly related to internal timber quality, with increasing competition leading to increased internal timber quality. We further observed more discoloration in timber of beech trees growing in mixture with other broadleaved tree species. We also showed that predicting discoloration is possible through the number of bark anomalies on the stem surface. Also, the external quality assessment of local foresters on standing trees predicted the internal timber features well. Finally, TLS appeared to be a valuable addition for assessing timber quality in situ.

Keywords

Discoloration European beech Knottiness Mixed forest stands Terrestrial laser scanning Wood quality 

Notes

Acknowledgements

This study was funded by Niedersächsisches Ministerium für Wissenschaft und Kultur embedded in the joint project ‘Materialforschung Holz’. Part of this work was also supported by funds of the German Government´s Special Purpose Fund held at Landwirtschaftliche Rentenbank (844732). The authors address special thanks to Axel Pampe, Director of the Lower Saxony Forest Office of Reinhausen and to Wolf-Georg Fehrensen, head of the Fehrensen private limited company (Hann. Münden, Germany). More precisely, we are grateful for receiving access to sites and trees, the sawing procedure and the assistance of the district foresters of the Forest Office of Reinhausen as well as the Fehrensen team during fieldwork. Special thanks go to Andreas Parth, Karl-Heinz Heine, Michael Unger, and Ulrike Westphal for supporting fieldwork, data acquisition, and for their constructive comments regarding planning and implementation of the project. Thanks are also due to Martin Lindenberg for his participation in fieldwork and data acquisition. We would like to thank the team of the Department of Silviculture and Forest Ecology of the Temperate Zones for supporting this work with helpful comments and assistance at the Fehrensen sawmill. Finally, we thank the anonymous reviewer for the helpful and constructive comments that contributed to an improvement of this article.

References

  1. Aicher S, Ohnesorge D (2011) Shear strength of glued laminated timber made from European beech timber. Eur J Wood Prod 69:143–154.  https://doi.org/10.1007/s00107-009-0399-9 CrossRefGoogle Scholar
  2. Ammer C (2008) Konkurrenzsteuerung–Anmerkungen zu einer Kernaufgabe des Waldbaus beim Aufbau vielfältiger Wälder. Eberswalder Forstliche Schriftenreihe Band: 36. Biologische Vielfalt–Lebensversicherung des Waldes, Eberswalde 21–26. Accessed 17 July 2018Google Scholar
  3. Ammer C (2016) Starkholz-wertvolles Instrument der waldbaulichen Steuerung. AFZ/Der Wald 71:33–36Google Scholar
  4. Ammer C, Ziegler C, Knoke T (2005) Zur Beurteilung von intra- und interspezifischer Konkurrenz von Laubbaumbeständen im Dickungsstadium. Allg Forst Jagdztg 176:85–94. http://mediatum.ub.tum.de/doc/625086/file.pdf. Accessed 4 Feb 2019
  5. Ammer C, Bickel E, Kölling C (2008) Converting Norway spruce stands with beech—a review of arguments and techniques. Austrian J For Sci 125:3–26Google Scholar
  6. Annighöfer P (2018) Stress relief through gap creation? Growth response of a shade tolerant species (Fagus sylvatica L.) to a changed light environment. For Ecol Manag 415–416:139–147CrossRefGoogle Scholar
  7. Bachmann M (1998) Indizes zur Erfassung der Konkurrenz von Einzelbäumen: Methodische Untersuchung in Bergmischwäldern. Forstliche Forschungsberichte München, 171, Frank, MünchenGoogle Scholar
  8. Ballard LA, Long JN (1988) Influence of stand density on log quality of lodgepole pine. Can J For Res 18:911–916CrossRefGoogle Scholar
  9. Barbeito I, Collet C, Ningre F (2014) Crown responses to neighbor density and species identity in a young mixed deciduous stand. Trees 28:1751–1765CrossRefGoogle Scholar
  10. Barbour RJ, Parry DL (2001) Log and lumber grades as indicators of wood quality in 20- to 100-year-old Douglas-fir trees from thinned and unthinned stands. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, PortlandCrossRefGoogle Scholar
  11. Bartelink HH (2000) Effects of stand composition and thinning in mixed-species forests: a modeling approach applied to Douglas-fir and beech. Tree Physiol 20:399–406CrossRefGoogle Scholar
  12. Bartsch N, Röhrig E (2016) Waldökologie: Einführung für Mitteleuropa. Spektrum Lehrbuch. Springer, BerlinCrossRefGoogle Scholar
  13. Benneter A, Forrester DI, Bouriaud O, Dormann CF, Bauhus J (2018) Tree species diversity does not compromise stem quality in major European forest types. For Ecol Manag 422:323–337CrossRefGoogle Scholar
  14. Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38:695–720Google Scholar
  15. BMEL (2014) Der Wald in Deutschland. Ausgewählte Ergebnisse der dritten Bundeswaldinventur. https://www.bmel.de/SharedDocs/Downloads/Broschueren/Bundeswaldinventur3.pdf?__blob=publicationFile. Accessed 5 Feb 2019
  16. BMELV (2011) Waldstrategie 2020. Nachhaltige Waldbewirtschaftung - eine gesellschaftliche Chance und Herausforderung. Available via http://www.bmel.de/SharedDocs/Downloads/Broschueren/Waldstrategie2020.pdf?__blob=publicationFile. Accessed 4 Feb 2019
  17. Bravo-Oviedo A, Pretzsch H, Ammer C, Andenmatten E, Barbati A, Barreiro S, Brang P, Bravo F, Coll L, Corona P, Den Ouden J, Ducey MJ, Forrester DI, Giergiczny M, Jacobsen JB, Lesinski J, Löf M, Mason WL, Matovic B, Metslaid M, Morneau F, Motiejunaite J, O’Reilly C, Pach M, Ponette Q, Del Rio M, Short I, Skovsgaard JP, Soliño M, Spathelf P, Sterba H, Stojanovic D, Strelcova K, Svoboda M, Verheyen K, von Lüpke N, Zlatanov T (2014) European mixed forests: definition and research perspectives. For Syst 23:518Google Scholar
  18. Bucur V, Timell TE (2003) Nondestructive characterization and imaging of wood. Springer, BerlinCrossRefGoogle Scholar
  19. Crawley MJ (2013) The R Book, 2nd edn. Wiley, ChichesterGoogle Scholar
  20. Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges. Ann For Sci 68:959–974CrossRefGoogle Scholar
  21. Dieler J, Pretzsch H (2013) Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manag 295:97–108CrossRefGoogle Scholar
  22. Dormann CF, Kühn I (2012) Angewandte Statistik für die biologischen Wissenschaften. Helmholtz Zentrum für Umweltforschung-UFZ. http://portal.uni-freiburg.de/biometrie/Dateien/PDF/dormann-kuehn_angewandtestatistik.pdf. Accessed 4 Feb 2019
  23. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 6th edn. E. Ulmer, StuttgartGoogle Scholar
  24. FARO Technologies I (2013) FARO Laser Scanner Focus 3D ManualGoogle Scholar
  25. Forest Europe (2015) State of Europe’s forests 2015. Accessed 17 July 2018Google Scholar
  26. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292CrossRefGoogle Scholar
  27. Gartner BL (2005) Assessing wood characteristics and wood quality in intensively managed plantations. J For 103:75–77Google Scholar
  28. Hartmann H, Beaudet M, Mazerolle MJ, Messier C (2009) Sugar maple (Acer saccharum Marsh.) growth is influenced by close conspecifics and skid trail proximity following selection harvest. For Ecol Manag 258:823–831CrossRefGoogle Scholar
  29. Hecht U, Kohnle U, Nill M, Grüner J, Metzler B (2015) Bark wounds caused by felling are more susceptible to discoloration and decay than wounds caused by extraction in European beech. Ann For Sci 72:731–740CrossRefGoogle Scholar
  30. Hegyi F (1974) A simulation model for managing jack-pine stands. In: Fries J (ed) Growth models for tree and stand simulation: International Union of Forestry Research Organizations Working Party S4. Skogshögskolan, Garpenberg, pp 74–90Google Scholar
  31. Hein S (2008) Knot attributes and occlusion of naturally pruned branches of Fagus sylvatica. For Ecol Manag 256:2046–2057CrossRefGoogle Scholar
  32. Höwler K, Annighöfer P, Ammer C, Seidel D (2017) Competition improves quality-related external stem characteristics of Fagus sylvatica. Can J For Res 47:1603–1613CrossRefGoogle Scholar
  33. Juchheim J, Annighöfer P, Ammer C, Calders K, Raumonen P, Seidel D (2017) How management intensity and neighborhood composition affect the structure of beech (Fagus sylvatica L.) trees. Trees 31:1723–1735CrossRefGoogle Scholar
  34. Knoke T (2003a) Eine Bewertung von Nutzungsstrategien für Buchenbestände (Fagus sylvatica L.) vor dem Hintergrund des Risikos der Farbkernbildung - eine waldbaulich-forstökonomische Studie. Forstliche Forschungsberichte München, 193, Frank, MünchenGoogle Scholar
  35. Knoke T (2003b) Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol Model 169:295–312.  https://doi.org/10.1016/S0304-3800(03)00276-X CrossRefGoogle Scholar
  36. Knoke T, Schulz Wenderoth S (2001) Ein Ansatz zur Beschreibung von Wahrscheinlichkeit und Ausmaß der Farbkernbildung bei Buche (Fagus sylvatica L.). Forstwissenschaftliches Centralblatt 120:154–172CrossRefGoogle Scholar
  37. Knoke T, Stang S, Remler N, Seifert T (2006) Ranking the importance of quality variables for the price of high quality beech timber (Fagus sylvatica L.). Ann For Sci 63:399–413CrossRefGoogle Scholar
  38. Mäkinen H (1999) Effect of stand density on radial growth of branches of Scots pine in southern and central Finland. Can J For Res 29:1216–1224. http://www.nrcresearchpress.com/doi/pdf/10.1139/x99-060. Accessed 5 Feb 2019
  39. Mäkinen H (2002) Effect of stand density on the branch development of silver birch (Betula pendula Roth) in central Finland. Trees 16:346–353Google Scholar
  40. Mäkinen H, Hein S (2006) Effect of wide spacing on increment and branch properties of young Norway spruce. Eur J For Res 125:239–248CrossRefGoogle Scholar
  41. Merganič J, Merganičová K, Marušák R, Tipmann L, Šálek L, Dragoun L, Stolariková R (2016) Relation between forest stand diversity and anticipated log quality in managed Central European forests. Int J Biodivers Sci Ecosyst Serv Manag 12:128–138CrossRefGoogle Scholar
  42. Metz J, Seidel D, Schall P, Scheffer D, Schulze E-D, Ammer C (2013) Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For Ecol Manag 310:275–288CrossRefGoogle Scholar
  43. Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Change Biol 22:903–920CrossRefGoogle Scholar
  44. Nuske R (2017) anstaltspaket: NW-FVA Collection. R package. https://www.nw-fva.de/r-pkgs. Accessed 11 July 2018
  45. Nüßlein S (1995) Struktur und Wachstumsdynamik jüngerer Buchen-Edellaubholz-Mischbestände in Nordbayern. Forstliche Forschungsberichte München, Nr. 151. Frank, MünchenGoogle Scholar
  46. Osborne NL, Maguire DA (2016) Modeling knot geometry from branch angles in Douglas-fir (Pseudotsuga menziesii). Can J For Res 46:215–224CrossRefGoogle Scholar
  47. Pohlert T (2018) PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. https://CRAN.R-project.org/package=PMCMRplus. Accessed 4 Feb 2019
  48. Pretzsch H (1995) Zum Einfluß des Baumverteilungsmusters auf den Bestandeszuwachs. Allg Forst- Jagdztg 166:190–201Google Scholar
  49. Pretzsch H, Rais A (2016) Wood quality in complex forests versus even-aged monocultures: review and perspectives. Wood Sci Technol 50:845–880.  https://doi.org/10.1007/s00226-016-0827-z CrossRefGoogle Scholar
  50. Pretzsch H, Schütze G (2005) Crown allometry and growing space efficiency of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) in pure and mixed stands. Plant Biol 7:628–639CrossRefGoogle Scholar
  51. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  52. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci 67:712CrossRefGoogle Scholar
  53. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947CrossRefGoogle Scholar
  54. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. Richter C (2015) Wood characteristics: description, causes, prevention, impact on use and technological adaptation. Springer, ChamCrossRefGoogle Scholar
  56. Rumpf H, Petersen R (2008) Waldumbau mit Buche unter Berücksichtigung ihrer ökologischen Ansprüche. In: Nordwestdeutsche Forstliche Versuchsanstalt (ed) Ergebnisse angewandter Forschung zur Buche. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt. Universitäts-Verlag Göttingen, Göttingen, pp 191–219Google Scholar
  57. RVR (2014) Rahmenvereinbarung für den Rohholzhandel in Deutschland (RVR). http://www.rvr-deutschland.de/docs/dynamisch/6205/rvr_gesamtdokument_2.auflage_stand_oktober_2015.pdf. Accessed 12 April 2017
  58. Skog KE, Wegner TH, Bilek EM, Michler CH (2015) Desirable properties of wood for sustainable development in the twenty-first century. Ann For Sci 72:671–678CrossRefGoogle Scholar
  59. Spellmann H (2005) Produziert der Waldbau am Markt vorbei? AFZ/Der Wald 60:454–459Google Scholar
  60. Stängle SM, Brüchert F, Kretschmer U, Spiecker H, Sauter UH (2014) Clear wood content in standing trees predicted from branch scar measurements with terrestrial LiDAR and verified with X-ray computed tomography. Can J For Res 44:145–153CrossRefGoogle Scholar
  61. Stängle SM, Brüchert F, Heikkila A, Usenius T, Usenius A, Sauter UH (2015) Potentially increased sawmill yield from hardwoods using X-ray computed tomography for knot detection. Ann For Sci 72:57–65CrossRefGoogle Scholar
  62. Stepien E, Gadola C, Lenz O, Schär E, Schmid-Haas P (1998) Die Taxierung der Holzqualität am stehenden Baum. Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft, BirmensdorfGoogle Scholar
  63. Sterba H, Vospernik S, Söderbergh I, Ledermann T (2006) Harvesting rules and modules for predicting commercial timber assortments. In: Hasenauer H (ed) Sustainable forest management: growth models for Europe. Springer, Berlin, pp 111–129CrossRefGoogle Scholar
  64. van der Zande D, Jonckheere I, Stuckens J, Verstraeten WW, Coppin P (2008) Sampling design of ground-based lidar measurements of forest canopy structure and its effect on shadowing. Can J Remote Sens 34:526–538CrossRefGoogle Scholar
  65. van Leeuwen M, Hilker T, Coops NC, Frazer G, Wulder MA, Newnham GJ, Culvenor DS (2011) Assessment of standing wood and fiber quality using ground and airborne laser scanning: a review. For Ecol Manag 261:1467–1478.  https://doi.org/10.1016/j.foreco.2011.01.032 CrossRefGoogle Scholar
  66. von Lüpke B, Ammer C, Braciamacchie M, Brunner A, Ceitel J, Collet C, Deu-leuze C, Di Placido J, Huss J, Jankovic J, Kantor P, Larsen J, Lexer M, Löf M, Longauer R, Madsen P, Modrzynski J, Mosandl R, Pampe A, Pommerening A, Stefancik J, Tesar V, Thompson R, Zientarski J (2004) Silvicultural strategies for conversion. In: Spiecker H, Hansen J, Klimo E et al (eds) Norway spruce conversion—options and consequences. Brill, Boston, pp 121–164Google Scholar
  67. Wernsdörfer H, Constant T, Mothe F, Badia MA, Nepveu G, Seeling U (2005) Detailed analysis of the geometric relationship between external traits and the shape of red heartwood in beech trees (Fagus sylvatica L.). Trees 19:482–491CrossRefGoogle Scholar
  68. Wernsdörfer H, Le Moguédec G, Constant T, Mothe F, Seeling U, Nepveu G (2007) Approach to the estimation of red heart occurrence in Fagus sylvatica based on geometric relationships between branch scar development and knot dimensions. Scand J For Res 20:448–455CrossRefGoogle Scholar
  69. Wiegard C, Netzker D, von Gadow K (1997) Die Erdstück-Methode der Wertinventur. Forstarchiv 68:144–148Google Scholar
  70. Willmann U, Mahler G, Wurster M (2001) Güteansprache am stehenden Stamm im Rahmen der Bundeswaldinventur II. Allg Forst Z Waldwirtsch Umweltvorsorge 56:1024Google Scholar
  71. Zeller L, Ammer C, Annighöfer P, Biber P, Marshall J, Schütze G, del Río Gaztelurrutia M, Pretzsch H (2017) Tree ring wood density of Scots pine and European beech lower in mixed-species stands compared with monocultures. For Ecol Manag 400:363–374CrossRefGoogle Scholar
  72. Zingg A, Ramp B (2003) Wachstum und Stammqualität in reinen und gemischten Buchenbeständen. Tagungsbericht, Jahrestagung 1997 des Deutschen Verbandes Forstlicher Forschungsanstalten 152–164Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest SciencesUniversity of GöttingenGöttingenGermany

Personalised recommendations