Advertisement

Spatio-temporal variation of natural regeneration in Pinus pinea and Pinus pinaster Mediterranean forests in Spain

  • Marta VergarecheaEmail author
  • Miren del Río
  • Javier Gordo
  • Rebeca Martín
  • David Cubero
  • Rafael Calama
Original Paper
  • 14 Downloads

Abstract

Recent research undertaken in Mediterranean pine forests suggests that the establishment of Pinus pinea L. and Pinus pinaster Ait. natural regeneration is determined by different spatial and temporal factors. In this context, we analyzed the establishment and success of natural regeneration in these two species and we examined the hypothesis that the spatial pattern of natural regeneration depends on adult tree presence, density or stand composition, while temporal patterns are typically driven by climatic conditions. For the purposes of the experiment we used 1936 plots of 0.02 ha established in mixed and pure forests of P. pinea and P. pinaster in the Northern Plateau of Spain. Plots were installed following regeneration fellings, and regeneration was monitored annually between 2001 and 2015. We used contingency tables and principal component analysis (PCA) to evaluate the main factors affecting the spatial distribution of the regeneration. PCA was also used to assess the temporal variation as a function of climatic variables. Finally, we checked for the existence of interspecific and intraspecific synchrony through Tau-Kendall synchrony analysis. We found that natural regeneration of P. pinea was more successful than that of P. pinaster over the whole of the studied period. Contingency tables showed that P. pinaster regeneration was associated with conspecific adult trees, while the relationship between P. pinea regeneration and adult trees varied depending on the regeneration development stage, i.e., seedling or saplings. Furthermore, we found that natural regeneration in both species could be enhanced through the presence of mixtures of adult trees. The spatial variability, analyzed through PCA, showed similar responses in both species, although temporal variability associated with climate variables differed between P. pinea and P. pinaster. Finally, we found different synchrony patterns affecting natural regeneration, depending on the species and the regeneration stages. In this context, temporal patterns seem to be species specific during the sapling stage of regeneration. These findings allow the observed regeneration patterns in Mediterranean pinewoods to be generalized at forest management scale.

Keywords

Regeneration establishment Ontogenic development Temporal synchrony Principal component analysis 

Notes

Acknowledgements

We are grateful to the Forest Service of the Junta de Castilla y León for conducting the field experiment. The author thanks Inforiego (www.inforiego.org) of the Instituto Tecnológico Agrario de Castilla y León for the climatic data. This contribution has been supported within the framework of projects AGL2014-51964-C2-2-R of Spanish Ministry of Economy and Competitiveness, CC16-095 PROPINEA, between INIA, ITACYL and Diputación de Valladolid and RTA2013-00011-C2.1.

References

  1. Aquino J (2016) ​Includes R source code and/or documentation written by Dirk Enzmann, Marc Schwartz, Nitin Jain and Stefan Kraft (2018). descr: Descriptive Statistics. R package version 1.1.4. https://CRAN.R-project.org/package=descr
  2. Barbeito I, Pardos M, Calama R, Canellas I (2008) Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics. Forestry 81:617–629.  https://doi.org/10.1093/forestry/cpn037 CrossRefGoogle Scholar
  3. Bernier P-Y, Schoene D (2009) Adapting forests and their management to climate change: an overviewGoogle Scholar
  4. Brunet M, Casado MJ, Castro M, et al (2009) Generación de escenarios regionalizados de cambio climático para España. Minist Medio Ambient Medio Rural y Mar, p 158Google Scholar
  5. Calama R, Barbeito I, Pardos M et al (2008) Adapting a model for even-aged Pinus pinea L. stands to complex multi-aged structures. For Ecol Manag 256:1390–1399.  https://doi.org/10.1016/j.foreco.2008.06.050 CrossRefGoogle Scholar
  6. Calama R, Puértolas J, Madrigal G, Pardos M (2013) Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecol Modell 251:9–21.  https://doi.org/10.1016/j.ecolmodel.2012.11.029 CrossRefGoogle Scholar
  7. Calama R, Puértolas J, Manso R, Pardos M (2015) Defining the optimal regeneration niche for Pinus pinea L. through physiology-based models for seedling survival and carbon assimilation. Trees Struct Funct 29:1761–1771.  https://doi.org/10.1007/s00468-015-1257-5 CrossRefGoogle Scholar
  8. Calama R, Manso R, Lucas-Borja ME et al (2017) Natural regeneration in Iberian pines: a review of dynamic processes and proposals for management. For Syst 26:eR02S.  https://doi.org/10.5424/fs/2017262-11255 Google Scholar
  9. Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277.  https://doi.org/10.1111/j.0022-0477.2004.00870.x CrossRefGoogle Scholar
  10. Cavender-Bares J, Bazzaz FA (2000) Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18.  https://doi.org/10.1007/PL00008865 CrossRefGoogle Scholar
  11. Davis FW, Tyler CM, Mahall BE (2011) Consumer control of oak demography in a Mediterranean-climate savanna. Ecosphere 2:art108.  https://doi.org/10.1890/es11-00187.1 CrossRefGoogle Scholar
  12. Del Peso C, Bravo F, Ruano I, Pando V (2012) Patrones de diseminación y nascencia de Pinus pinaster Ait. En la Meseta castellana. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de los pinares en los arenales de la meseta castellana. Instituto Universitario de Investigación en Gestión ForestalSostenible, Valladolid, pp 161–175Google Scholar
  13. del Río M, Pretzsch H, Alberdi I et al (2016) Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur J For Res 135:23–49.  https://doi.org/10.1007/s10342-015-0927-6 CrossRefGoogle Scholar
  14. Doblas-Miranda E, Alonso R, Arnan X et al (2016) A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob Planet Change 148:42–54.  https://doi.org/10.1016/j.gloplacha.2016.11.012 CrossRefGoogle Scholar
  15. Eerikäinen K, Miina J, Valkonen S (2007) Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland. For Ecol Manag 242(2–3):444–461CrossRefGoogle Scholar
  16. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292.  https://doi.org/10.1016/j.foreco.2013.10.003 CrossRefGoogle Scholar
  17. Gandullo J., Sánchez-Palomares O (1994) Estaciones ecológicas de los pinares españoles. Minist Agric Pesca y AlimentGoogle Scholar
  18. Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I et al (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: implications for regeneration in current and future environmental scenarios. Oikos 117:1683–1699.  https://doi.org/10.1111/j.1600-0706.2008.16814.x CrossRefGoogle Scholar
  19. Gordo F, Rojo LI, Calama R, Al E (2012) Selvicultura de regeneración natural de Pinus pinea L. en montes públicos de la provincia de Valladolid. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de los pinares en los arenales de la meseta castellana. Instituto Universitario de Investigación en Gestión ForestalSostenible, Valladolid, pp 145–159Google Scholar
  20. Grassi G, Minotta G, Tonon G, Bagnaresi U (2004) Dynamics of Norway spruce and silver fir natural regeneration in a mixed stand under uneven-aged management. Can J For Res 34(1):141–149CrossRefGoogle Scholar
  21. Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann For Sci 72:145–167.  https://doi.org/10.1007/s13595-014-0446-5 CrossRefGoogle Scholar
  22. Kolström M, Lindner M, Vilén T et al (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982.  https://doi.org/10.3390/f2040961 CrossRefGoogle Scholar
  23. Lochhead KD, Comeau PG (2012) Relationships between forest structure, understorey light and regeneration in complex Douglas-fir dominated stands in south-eastern British Columbia. For Ecol Manag 284:12–22.  https://doi.org/10.1016/j.foreco.2012.07.029 CrossRefGoogle Scholar
  24. Manso R, Pardos M, Keyes CR, Calama R (2012) Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ecol Modell 226:11–21.  https://doi.org/10.1016/j.ecolmodel.2011.11.028 CrossRefGoogle Scholar
  25. Manso R, Calama R, Madrigal G, Pardos M (2013) A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment. Eur J For Res 132(5–6):969–982CrossRefGoogle Scholar
  26. Manso R, Pukkala T, Pardos M et al (2014) Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can J For Res 44:250–262.  https://doi.org/10.1139/cjfr-2013-0179 CrossRefGoogle Scholar
  27. Martínez M, Tapias R (2005) Photosynthetic response to light and temperature of Spanish pines young seedlings. In: International conference of conservation, regeneration and restoration of mediterranean pines and their ecosystems MEDPINEGoogle Scholar
  28. Montero G, Calama R, Ruiz Peinado R (2008) Selvicultura de Pinus pinea. In: Montero G, Serrada R, Reque J (eds) Compendio de Selvicultura de Especies. Ministerio de Educación y Ciencia, Madrid, pp 431–470Google Scholar
  29. Moreno-Fernández D, Montes F, Sánchez-González M et al (2017) Regeneration dynamics of mixed stands of Pinus pinaster Ait. and Pinus pinea L. in Central Spain. Eur J For Res.  https://doi.org/10.1007/s10342-017-1086-8 Google Scholar
  30. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara LB, Simpson GL, Solymos P, Stevens MHM, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.5-3. https://CRAN.R-project.org/package=vegan
  31. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New YorkGoogle Scholar
  32. Ordóñez JL, Molowny-Horas R, Retana J (2006) A model of the recruitment of Pinus nigra from unburned edges after large wildfires. Ecol Modell 197(3–4):405–417CrossRefGoogle Scholar
  33. Pardos M, Bravo F, Gordo J, Montero G, Calama R (2012) La investigación en regeneración natural de las masas forestales. In: Gordo J, Calama R, Pardos M, Bravo F, Montero G (eds) La regeneración natural de los pinares en los arenales de la meseta castellana. Instituto Universitario de Investigación en Gestión ForestalSostenible, Valladolid, pp 17–36Google Scholar
  34. Pardos M, Climent J, Almeida H, Calama R (2014) The role of developmental stage in frost tolerance of Pinus pinea L. seedlings and saplings. Ann For Sci 71:551–562.  https://doi.org/10.1007/s13595-014-0361-9 CrossRefGoogle Scholar
  35. PORF (2008) Plan de ordenación de los recursos forestales de la provincia de Valladolid. Servicio Territorial de Medio Ambiente. Junta de Castilla y León. http://www.jcyl.es/web/jcyl/MedioAmbiente/es/Plantilla100DetalleFeed/1246988359553/Noticia/1200229949988/Comunicacion
  36. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495.  https://doi.org/10.1111/j.1438-8677.2012.00670.x CrossRefGoogle Scholar
  37. Price DT, Zimmermann NE, van der Meer PJ, Lexer MJ, Leadley P, Jorritsma IT, Schaber J, Clark DF, Lasch P, McNulty S, Wu J (2001) Regeneration in gap models: priority issues for studying forest responses to climate change. Clim Chang 51:475–508CrossRefGoogle Scholar
  38. Pukkala T, Kolström T (2008) A stochastic spatial regeneration model for Pinus sylvestris. Scand J For Res 7(1–4):377–385Google Scholar
  39. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Rodríguez-García E, Juez L, Guerra B, Bravo F (2007) Natural regeneration analysis of Pinus pinaster Ait. inthe sandy areas of Almazan-Bayubas. (Soria, Spain). Investigación Agraria: Sistemas y Recursos Forestales 16(1):25Google Scholar
  41. Rodríguez R, Serrada R, Lucas, JA, Alejano R, Del Río M, Torres E, Cantero A (2008) Selvicultura de Pinus pinaster Ait. subp. mesogeensis Fieschi & Gaussen. In: Serrada R, Montero G, Reque J (eds) Compendio de selvicultura aplicada en España.Google Scholar
  42. Rodríguez-García E, Gratzer G, Bravo F (2011a) Climatic variability and other site factor influences on natural regeneration of Pinus pinaster Ait. in Mediterranean forests. Ann For Sci 68:811–823.  https://doi.org/10.1007/s13595-011-0078-y CrossRefGoogle Scholar
  43. Rodríguez-García E, Bravo F, Spies TA (2011b) Effects of overstorey canopy, plant-plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251.  https://doi.org/10.1016/j.foreco.2011.03.029 CrossRefGoogle Scholar
  44. Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manag 258:2647–2653.  https://doi.org/10.1016/j.foreco.2009.09.027 CrossRefGoogle Scholar
  45. Sokal R, Rohlf F (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freemanm, New YorkGoogle Scholar
  46. Stancioiu PT, O’hara KL (2006a) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151–162.  https://doi.org/10.1007/s10342-005-0069-3 CrossRefGoogle Scholar
  47. Stancioiu PT, O’Hara KL (2006b) Morphological plasticity of regeneration subject to different levels of canopy cover in mixed-species, multiaged forests of the Romanian Carpathians. Trees Struct Funct 20:196–209.  https://doi.org/10.1007/s00468-005-0026-2 CrossRefGoogle Scholar
  48. Stein WI (1992) Regeneration surveys and evaluation. In: Hobbs S, Tesch S, Owston P (eds) Reforestation practices in southwestern Oregon and northern California. Forest Research Laboratory, Oregon State University, Corvallis, pp 346–382Google Scholar
  49. Valladares F, Dobarro I, Sánchez-Gómez D, Pearcy RW (2005) Photoinhibition and drought in Mediterranean woody saplings: scaling effects and interactions in sun and shade phenotypes. J Exp Bot 56:483–494.  https://doi.org/10.1093/jxb/eri037 CrossRefGoogle Scholar
  50. Walker RF, Fecko RM, Frederick WB et al (2007) Forest health impacts of bark beetles, dwarf mistletoe, and blister rust in a Lake Tahoe Basin mixed conifer stand. West N Am Nat 67:562–571.  https://doi.org/10.3398/1527-0904(2007)67%5b562:FHIOBB%5d2.0.CO;2 CrossRefGoogle Scholar
  51. Webb AA, Jarrett BW (2013) Hydrological response to wildfire, integrated logging and dry mixed species eucalypt forest regeneration: the Yambulla experiment. For Ecol Manag 306:107–117.  https://doi.org/10.1016/j.foreco.2013.06.020 CrossRefGoogle Scholar
  52. Yoshida T, Iga Y, Ozawa M et al (2005) Factors influencing early vegetation establishment following soil scarification in a mixed forest in northern Japan. Can J For Res 35:175–188.  https://doi.org/10.1139/x04-156 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Deparment of Forest Dynamics and ManagementINIA Forest Research Centre INIA-CIFORMadridSpain
  2. 2.Sustainable Forest Management Research InstituteUniversidad de Valladolid & INIAMadrid/PalenciaSpain
  3. 3.Servicio Territorial de Medio Ambiente de ValladolidValladolidSpain

Personalised recommendations