Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetic diversity and differentiation of introduced red oak (Quercus rubra) in Germany in comparison with reference native North American populations

  • 349 Accesses

  • 2 Citations


Northern red oak (Quercus rubra) was introduced to Europe in the late seventeenth century and has since become the most important deciduous non-native tree species in Germany. Despite its importance, little is known about the origin and patterns of genetic variation in German red oak stands. To be able to make recommendations regarding the adaptive potential of red oak stands, which might be related to their origin and the selection of provenances, with respect to climate change, a better understanding of the genetic diversity and structure of German red oak stands is needed. Individuals from 62 populations in Germany and North America were genotyped at five chloroplast microsatellite loci to characterize chloroplast haplotype diversity and geographic structure. Compared to reference populations from the natural distribution range, German red oak stands demonstrated a relatively low genetic differentiation among populations and represented only a fraction of the haplotype diversity found in North America. For several stands located in southern Germany, considerably higher haplotype diversity than in other German stands was found. While most German stands showed signatures of founder effects, the diversity of stands in southern Germany might have been increased due to admixture and multiple introductions of different North American provenances. Overall, we conclude that German stands originated from a limited geographic area, possibly located in the northern part of the native distribution range.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Alexander LW, Woeste KE (2014) Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genet Genomes 10:803–812

  2. Barrett SC, Husband BC (1990) The genetics of plant migration and colonization. In: Brown HD, Clegg MT, Kahler AL et al (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates Inc., Massachusetts, pp 254–277

  3. Bauer F (1951) Die Roteiche 1950. Eine ertragskundlich-biologische und holzkundliche Untersuchung. Dissertation, Universität Göttingen

  4. Bauer F (1954) Zur Rassenfrage der Roteiche. Allgemeine Forstzeitschrift 9:470–474

  5. Birchenko I, Feng Y, Romero-Severson J (2009) Biogeographical distribution of chloroplast diversity in northern red oak (Quercus rubra L.). Am Midl Nat 161:134–145

  6. Borkowski DS, Hoban SM, Chatwin W, Romero-Severson J (2017) Rangewide population differentiation and population substructure in Quercus rubra L. Tree Genet Genomes 13:472

  7. Bruvo R, Michiels NK, D’Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106

  8. Bundesministerium für Ernährung und Landwirtschaft (BMEL) (2014) Der Wald in Deutschland. Ausgewählte Ergebnisse der dritten Bundeswaldinventur. https://www.bundeswaldinventur.de/fileadmin/SITE_MASTER/content/Dokumente/Downloads/BMEL_Wald_Broschuere.pdf. Accessed 20 Mar 2018

  9. Burban C, Petit RJ, Carcreff E, Jactel H (1999) Rangewide variation of the maritime pine bast scale Matsucoccus feytaudi Duc. (Homoptera: Matsucoccidae) in relation to the genetic structure of its host. Mol Ecol 8:1593–1602

  10. Chmura D (2013) Impact of alien tree species Quercus rubra L. on understorey environment and flora: A study of the silesian upland (southern Poland). Polish J Ecol 61:431–442

  11. Daubree JB, Kremer A (1993) Genetic and phenological differentiation between introduced and natural populations of Quercus rubra L. Ann For Sci 50:271s–280s

  12. Deguilloux M-F, Dumolin-Lapègue S, Gielly D, Grivet D, Petit RJ (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Mol Ecol Notes 3:24–27

  13. Dlugosch KM, Parker IM (2008) Founding events in species invasions. Genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

  14. Dreßel R, Jäger EJ (2002) Beiträge zur Biologie der Gefäßpflanzen des herzynischen Raumes. 5. Quercus rubra L. (Roteiche): Lebensgeschichte und agriophytische Ausbreitung im Nationalpark Sächsische Schweiz. Hercynia 35:37–64

  15. Excoffier L, Lischer HLE (2010) Arlequin suite ver 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

  16. Gailing O, Wachter H, Heyder J, Rogge M, Finkeldey R (2009) Chloroplast DNA analyses of very old, presumably autochthonous Quercus robur L. stands in North Rhine-Westphalia. Allgemeine Forst- und Jagdzeitung 180:221–227

  17. Google Maps (2017a) Map. Populations in Germany. https://www.google.de/maps/@50.8871706,7.9740269,7z/data=!3m1!4b1!4m2!6m1!1s18cXo5V8opHdmODvdDhOnbGxKt3Q1t6S0?hl=de. Accessed 15 Dec 2017

  18. Google Maps (2017b) Map. Populations south of the great lakes. https://www.google.de/maps/@42.6170767,-82.2325253,7z/data=!4m2!6m1!1s1CaBHN6sHvvBYSIyeuU2vk4sRkzs?hl=de. Accessed 12 Dec 2017

  19. Google Maps (2017c) Map. USA & Canada (East). https://www.google.de/maps/@42.6170767,-82.2325253,7z/data=!4m2!6m1!1s1CaBHN6sHvvBYSIyeuU2vk4sRkzs?hl=de. Accessed 12 Dec 2017

  20. Graw J (2005) Genetik, 4th edn. Springer, Berlin

  21. Grivet D, Deguilloux M-F, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15:4085–4093

  22. Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Mol Ecol 13:3437–3452

  23. Hulme PE (2009) Trade, transport and trouble. Managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

  24. Liesebach M, Schneck V (2011) Entwicklung von amerikanischen und europäischen Herkünften der Roteiche in Deutschland. Forstarchiv 82:125–133

  25. Lind JF, Gailing O (2013) Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genet Genomes 9:707–722

  26. Lind-Riehl JF, Sullivan AR, Gailing O (2014) Evidence for selection on a CONSTANS-like gene between two red oak species. Ann Bot 113:967–975

  27. Little EL (1999) Range of Quercus rubra. U.S. Geological Survey

  28. López de Heredia U, Carrión JS, Jiménez P, Collada C, Gil L (2007) Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. J Biogeography 34:1505–1517

  29. Magni Diaz CR (2004) Reconstitution de l’introduction de Quercus rubra L. en Europe et conséquences génétiques dans les populations allochtones. Dissertation, Ècole Nationale du Génie Rural, des Eaux et des Forêts (in French)

  30. Magni CR, Ducousso A, Caron H, Petit RJ, Kremer A (2005) Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol Ecol 14:513–524

  31. Mayr E (1954) Change of the genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen & Unwin, London, pp 157–180

  32. Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, McKay JK (2006) Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions 8:1355–1366

  33. Merceron NR, Leroy T, Chancerel E, Romero-Severson J, Borkowski DS, Ducousso A, Monty A, Porté AJ, Kremer A (2017) Back to America. Tracking the origin of European introduced populations of Quercus rubra L. Genome 60:778–790

  34. Möllerová J (2005) Notes on invasive and expansive trees and shrubs. Journal of Forest Science 51:19–23

  35. Nagel R-V (2015) Roteiche (Quercus rubra L.). In: Vor T, Spellmann H, Bolte A et al (eds) Potenziale und Risiken eingeführter Baumarten. Baumartenportraits mit naturschtuzfachlicher Bewertung. Univ.-Verl. Göttingen, Göttingen, pp 219–267

  36. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

  37. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547

  38. Palmé AE, Su Q, Rautenberg A, Manni F, Lascoux M (2003) Postglacial recolonization and cpDNA variation of silver birch, Betula pendula. Mol Ecol 12:201–212

  39. Peakall R, Smouse PE (2006) GenAlEx 6. Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

  40. Peakall R, Smouse PE (2012) GenAlEx 6.5. Genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics (Oxford, England) 28:2537–2539

  41. Petit RJ, Kremer A, Wagner DB (1993) Geographic structure of chloroplast DNA polymorphisms in European oaks. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 87:122–128

  42. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

  43. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2. A software for genetic assignment and first-generation migrant detection. J Heredity 95:536–539

  44. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

  45. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201

  46. Riepšas E, Straigytė L (2008) Invasiveness and ecological effects of red oak (Quercus rubra L.) in Lithuanian Forests. Baltic Forestry 14:122–130

  47. Roloff A, Grundmann B (2008) Klimawandel und Baumarten-Verwendung für Waldökosysteme. Technische Universität Dresden. http://waldundklima.de/klima/klima_docs/swin_roloff_klam_2008.pdf. Accessed 26 Feb 2018

  48. Romero-Severson J, Aldrich P, Feng Y, Sun W, Michler C (2003) Chloroplast DNA variation of northern red oak (Quercus rubra L.) in Indiana. New Forest 26:43–49

  49. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

  50. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360

  51. Vor T (2005) Natural regeneration of Quercus rubra L. (Red Oak) in Germany. In: Nentwig W, Bacher S, Cock MJW et al (eds) Biological invasions—From ecology to control, pp 111–123

  52. Vor T, Lüpke Bv (2004) Das Wachstum von Roteiche, Traubeneiche und Rotbuche unter verschiedenen Lichtbedingungen in den ersten beiden Jahren nach der Pflanzung. Forstarchiv 75:13–19

  53. Weising K, Gardner RC (1999) A set of conserved PCR Primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

  54. Zhang R, Hipp AL, Gailing O (2015) Sharing of chloroplast haplotypes among red oak species suggests interspecific gene flow between neighboring populations. Botany 93:691–700

Download references


We thank Alexandra Dolynska, Andreas Parth, Oliver Caré, Katrin Burger and Maximilian Boersch for their technical assistance. We also thank two anonymous reviewers for their helpful comments on earlier drafts and Edward Jones for attentive English editing. The study was supported by the German Federal Ministry of Food and Agriculture (Funding code 22023314).

Author information

Correspondence to Ludger Leinemann or Oliver Gailing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Lluís Coll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1411 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pettenkofer, T., Burkardt, K., Ammer, C. et al. Genetic diversity and differentiation of introduced red oak (Quercus rubra) in Germany in comparison with reference native North American populations. Eur J Forest Res 138, 275–285 (2019). https://doi.org/10.1007/s10342-019-01167-5

Download citation


  • Chloroplast microsatellites
  • cpSSRs
  • Quercus rubra
  • Haplotype diversity
  • Origin
  • Provenances