Advertisement

Ecological strategies of tree species in the laurel forest of Tenerife (Canary Islands): an insight into cloud forest natural dynamics using long-term monitoring data

  • Elias Ganivet
  • Olivier Flores
  • Eduardo Balguerías
  • Lea de Nascimento
  • José Ramón Arévalo
  • Silvia Fernández-Lugo
  • José Maria Fernández-Palacios
Original Paper
  • 37 Downloads

Abstract

In Tenerife (Canary Islands), the laurel forest is considered one of the most biodiverse ecosystems of the archipelago. This study aims at providing useful information about tree species strategies and their natural dynamics in order to improve understanding of the functioning of this ecosystem. The knowledge gained would be of great importance for laurel forest conservation, not only in the Canaries, but also in Madeira and the Azores. Our main research question is: ‘Are the ecological groups of laurel forest tree species, described in earlier studies based exclusively on regeneration strategies, consistent with species functional traits, growth patterns and spatial distributions?’ We used data from six 50 × 50 m permanent plots established in 1999 and re-measured in 2015, combined with information on twelve functional traits from newly produced data or extracted from previous studies. For each species, we analyzed the abundance of seedlings/suckers, saplings and adults inside the permanent plots. Two ordination methods were used to assess multivariate differences in functional traits between species. Different mixed-effect models were tested to investigate effects of sites, individual tree size and competition on tree growth rates. Finally we analyzed the spatial distribution of both saplings and adults and their interaction within the six permanent plots. Our results were consistent with a classification of species into different ecological groups based on (1) their shade tolerance: light-demanding versus shade-tolerant species and (2) their reproductive strategies: sexual (i.e., seedlings), asexual (i.e., suckers) or both. These differences between light-demanding versus shade-tolerant and/or seedling-producing species versus sucker-producing species were consistently observed across the species functional traits, growth patterns and spatial distributions. Only one species, Viburnum rigidum Vent., presented singularities compared with its previously established group. Because V. rigidum is mostly an understory species, we proposed to add a third aspect to the classification scheme: understory versus canopy species. This led to a total of six ecological groups within fourteen laurel forest tree species. Finally, this study also showed that the Tenerife laurel forest is still maturing and becoming richer in species, which outlines the importance of its preservation.

Keywords

Anaga Rural Park Functional traits Growth modeling Laurel forests Permanent plots Spatial analyses Tenerife 

Abbreviations

CSR

Complete spatial randomness

DBH

Diameter at breast height

APBA

Apollonias barbujana

ERAR

Erica arborea

ERSC

Erica scoparia

HEEX

Heberdenia excelsa

ILCA

Ilex canariensis

ILPE

Ilex perado

LANO

Laurus novocanariensis

MOFA

Morella faya

OCFO

Ocotea foetens

PEIN

Persea indica

PIEX

Picconia excelsa

PRLU

Prunus lusitanica

RHGL

Rhamnus glandulosa

VIMO

Visnea mocanera

VIRI

Viburnum rigidum

Notes

Acknowledgements

The first author acknowledges funding support from the Région Aquitaine (France) as well as the European Union as part of the Erasmus + internship program. We are grateful to Lukas Rester, Johannes Gebler, Linda Carstens, Zaira Negrín-Pérez and Richard Bigley for assistance with fieldwork. Finally, we record our appreciation to Mark Bloomberg for editing the English as well as six anonymous reviewers for giving useful comments on an earlier version of this paper.

Supplementary material

10342_2018_1156_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1453 kb)

References

  1. Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernán F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-AR data. J Volcanol Geoth Res 44:231–249.  https://doi.org/10.1016/0377-0273(90)90019-C CrossRefGoogle Scholar
  2. Anten NPR, Schieving F (2010) The role of wood mass density and mechanical constraints in the economy of tree architecture. Am Nat 175:250–260.  https://doi.org/10.1086/649581 CrossRefPubMedGoogle Scholar
  3. Arévalo JR, Fernández-Palacios JM (1998) Treefall gap characteristics and regeneration in the laurel forest of Tenerife. J Veg Sci 9:297–306.  https://doi.org/10.2307/3237094 CrossRefGoogle Scholar
  4. Arévalo JR, Fernández-Palacios JM (2000) Seed bank analysis of tree species in two stands of the Tenerife laurel forest (Canary Islands). For Ecol Manage 130:177–185.  https://doi.org/10.1016/S0378-1127(99)00182-6 CrossRefGoogle Scholar
  5. Arévalo JR, Fernández-Palacios JM (2003) Spatial patterns of trees and juveniles in a laurel forest of Tenerife, Canary Islands. Plant Ecol 165:1–10.  https://doi.org/10.1023/A:1021490715660 CrossRefGoogle Scholar
  6. Arévalo JR, Fernández-Palacios JM (2007) Treefall gaps and regeneration composition in the laurel forest of Anaga (Tenerife): a matter of size? Plant Ecol 188:133–143.  https://doi.org/10.1007/s11258-006-9152-1 CrossRefGoogle Scholar
  7. Arévalo JR, Fernández-Palacios JM, Palmer MW (1999) Tree regeneration and future dynamics of the laurel forest on Tenerife, Canary Islands. J Veg Sci 10:861–868.  https://doi.org/10.2307/3237311 CrossRefGoogle Scholar
  8. Arévalo JR, Delgado JD, Fernández-Palacios JM (2007) Variation in fleshy fruit fall composition in an island laurel forest of the Canary Islands. Acta Oecol 32:152–160.  https://doi.org/10.1016/j.actao.2007.03.014 CrossRefGoogle Scholar
  9. Arévalo JR, Delgado JD, Fernández-Palacios JM (2008) Changes in plant species composition and litter production in response to roads and trails in the laurel forest of Tenerife (Canary Islands). Plant Biosyst 142:614–622.  https://doi.org/10.1080/11263500802410991 CrossRefGoogle Scholar
  10. Arévalo JR, Delgado JD, Fernández-Palacios JM (2011) Regeneration of potential laurel forest under a native canopy vs. exotic canopy, Tenerife (Canary Islands). For Syst 20:255–265.  https://doi.org/10.5424/fs/2011202-10921 CrossRefGoogle Scholar
  11. Arévalo JR, González-Delgado G, Mora B, Fernández-Palacios JM (2012) Compositional and structural differences in two laurel forest stands (windward and leeward) on Tenerife, Canary Islands. J For Res 17:184–192.  https://doi.org/10.1007/s10310-011-0293-2 CrossRefGoogle Scholar
  12. Arévalo JR, de Nascimento L, Fernández-Lugo S, Méndez J, González-Delgado G, Balguerías E, Pereira Cabral Gomes E, Fernández-Palacios JM (2018) Regeneration dynamics in the laurel forest: changes in species richness and composition. iForest 11(2):308.  https://doi.org/10.3832/ifor2580-011 CrossRefGoogle Scholar
  13. Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach AM, Herault B, Patino S, Roggy JC, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347.  https://doi.org/10.1111/j.1461-0248.2010.01517.x CrossRefPubMedGoogle Scholar
  14. Besag J (1977) Contribution to the discussion of Dr. Ripley’s paper. JR Stat Soc B 39:193–195Google Scholar
  15. Brokaw N (1985) Treefalls, regrowth, and community structure in tropical forests. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 53–68Google Scholar
  16. Brokaw N (1985b) Gap-phase regeneration in a tropical forest. Ecology 66:682–687.  https://doi.org/10.2307/1940529 CrossRefGoogle Scholar
  17. Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896. http://www.jstor.org/stable/2442382
  18. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege HT, Webb CO (2006) Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol Appl 16:2356–2367.  https://doi.org/10.1890/1051-0761(2006)016%5B2356:RAPVOW%5D2.0.CO;2 CrossRefPubMedGoogle Scholar
  19. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366.  https://doi.org/10.1111/j.1461-0248.2009.01285.x CrossRefPubMedGoogle Scholar
  20. Clark DA, Clark DB (1999) Assessing the growth of tropical rain forest trees: issues for forest modeling and management. Ecol Appl 9(3):981–997.  https://doi.org/10.2307/2641344 CrossRefGoogle Scholar
  21. Coomes DA (2006) Challenges to the generality of WBE theory. Trends Ecol Evol 21(11):593–596.  https://doi.org/10.1016/j.tree.2006.09.002 CrossRefPubMedGoogle Scholar
  22. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  23. del Arco M, González-González R, Garzόn-Machado V, Pizarro-Hernández B (2010) Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodivers Conserv 19:3089–3140.  https://doi.org/10.1007/s10531-010-9881-2 CrossRefGoogle Scholar
  24. Denslow JS (1987) Tropical rainforest gaps and tree species diversity. Annu Rev Ecol Syst 18:431–451CrossRefGoogle Scholar
  25. Dias E, Elias RB, Nunes V (2004) Vegetation mapping and nature conservation: a case study in Terceira Island (Azores). Biodivers Conserv 13:1519–1539.  https://doi.org/10.1023/B:BIOC.0000021326.50170.66 CrossRefGoogle Scholar
  26. Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2016) The global spectrum of plant form and function. Nature 529:167–171.  https://doi.org/10.1038/nature16489 CrossRefPubMedGoogle Scholar
  27. Elias RB, Dias E (2009) Gap dynamics and regeneration strategies in Juniperus-Laurus forests of the Azores Islands. Plant Ecol 200:179–189.  https://doi.org/10.1007/s11258-008-9442-x CrossRefGoogle Scholar
  28. Favrichon V (1994) Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d’un modèle de dynamique de peuplement en forêt guyanaise. Revue d’Ecologie Terre et Vie 49:379–402Google Scholar
  29. Fernández-Lugo S, de Nascimento L, Méndez J, González-Delgado G, Gomes EPC, Rüdiger O, Arévalo JR, Fernández-Palacios JM (2014) Seedling survival patterns in Macaronesian laurel forest: a long-term study in Tenerife (Canary Islands). For Int J For Res 88(1):121–130.  https://doi.org/10.1093/forestry/cpu035 CrossRefGoogle Scholar
  30. Fernández-Palacios JM (2009) Laurisilvas macaronésicas (Laurus, Ocotea) (*). In VV.AA., Bases ecolόgicas preliminares para la conservaciόn de los tipos de hábitat de interés comunitario en Espana. Ministerio de Medio Ambiente, y Medio Rural y MarinoGoogle Scholar
  31. Fernández-Palacios JM, Arévalo JR (1998) Regeneration strategies of tree species in the laurel forest of Tenerife (The Canary Islands). Plant Ecol 137:21–29.  https://doi.org/10.1023/A:1008000330184 CrossRefGoogle Scholar
  32. Fernández-Palacios JM, Arévalo JR, González-Delgado G, Delgado JD, Rüdiger O (2004) Estrategias de regeneraciόn en la laurisilva. Makaronesia 6:90–101Google Scholar
  33. Fernández-Palacios JM, Arévalo JR, Balguerías E, Barone R, de Nascimento L, Delgado JD, Elias RB, Fernández-Lugo S, Méndez J, Naranjo A, Sequeira M, Otto R (2017) La Laurisilva. Canarias, Madeira y Azores. Macaronesia. Editorial, Santa Cruz de TenerifeGoogle Scholar
  34. Gavin DG, Peart DR (1997) Spatial structure and regeneration of Tetramerista glabra in peat swamp rain forest in Indonesian Borneo. Plant Ecol 131:223–231.  https://doi.org/10.1023/A:1009771519028 CrossRefGoogle Scholar
  35. Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96(4):807–820.  https://doi.org/10.1111/j.1365-2745.2008.01377.x CrossRefGoogle Scholar
  36. Goreaud F, Pélissier R (1999) On explicit formulas of edge effect correction for Ripley’s K-function. J Veg Sci 10:433–438.  https://doi.org/10.2307/3237072 CrossRefGoogle Scholar
  37. Goreaud F, Pélissier R (2003) Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses. J Veg Sci 14:681–692.  https://doi.org/10.1111/j.1654-1103.2003.tb02200.x CrossRefGoogle Scholar
  38. Guimarāes A, Olmeda C (2008) Management of Natura 2000 habitat. 9360 *Macaronesian laurel forests (Laurus, Ocotea). European CommissionGoogle Scholar
  39. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461.  https://doi.org/10.1007/s004420100628 CrossRefPubMedGoogle Scholar
  40. Herault B, Ouallet J, Blanc L, Wagner F, Baraloto C (2010) Growth responses of neotropical trees to logging gaps. J Appl Ecol 47(4):821–831.  https://doi.org/10.1111/j.1365-2664.2010.01826.x CrossRefGoogle Scholar
  41. Herault B, Bachelot B, Poorter L, Rossi V, Bongers F, Chave J, Paine C, Wagner F, Baraloto C (2011) Functional traits shape ontogenetic growth trajectories of rain forest tree species. J Ecol 99(6):1431–1440.  https://doi.org/10.1111/j.1365-2745.2011.01883.x CrossRefGoogle Scholar
  42. Hirose T, Werger M (1987) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72:520–526.  https://doi.org/10.1007/BF00378977 CrossRefPubMedGoogle Scholar
  43. Hubbell SP, Foster RB, O’Brien ST, Harms K, Condit R, Wechsler B, Wright SJ, De Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557.  https://doi.org/10.1126/science.283.5401.554 CrossRefPubMedGoogle Scholar
  44. Kämmer F (1974) Klima und vegetation auf Tenerife, besonders in Hinblick auf den Nebelniedershlag. Scr Geobot 7:1–78Google Scholar
  45. King DA, Davies SJ, Noor NSM (2006a) Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. For Ecol Manage 223:152–158.  https://doi.org/10.1016/j.foreco.2005.10.066 CrossRefGoogle Scholar
  46. King DA, Davies SJ, Tan S, Noor NSM (2006b) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680.  https://doi.org/10.1016/j.foreco.2005.10.066 CrossRefGoogle Scholar
  47. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305.  https://doi.org/10.1890/08-2244.1 CrossRefPubMedGoogle Scholar
  48. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12Google Scholar
  49. Lasky JR, Bachelot B, Muscarella R, Schwartz N, Forero-Montaña J, Nytch CJ, Swenson NG, Thompson J, Zimmermann JK, Uriarte M (2015) Ontogenetic shifts in trait-mediated mechanisms of plant community assembly. Ecology 96:2157–2169.  https://doi.org/10.1890/14-1809.1 CrossRefPubMedGoogle Scholar
  50. Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier, AmsterdamGoogle Scholar
  51. Lotwick HW, Silverman BW (1982) Methods for analysing spatial processes of several types of points. J R Stat Soc Ser B (Methodological) 44: 406–413. http://www.jstor.org/stable/2345499
  52. Lugo AE, Scatena FN (1996) Background and catastrophic tree mortality in tropical moist, wet and rain forests. Biotropica 28:585–599.  https://doi.org/10.2307/2389099 CrossRefGoogle Scholar
  53. Lusk CH (1999) Long-lived light-demanding emergents in southern temperate forests: the case of Weinmannia trichosperma (Cunoniaceae) in Chile. Plant Ecol 140:111–115.  https://doi.org/10.1023/A:1009764705942 CrossRefGoogle Scholar
  54. Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011) Hydraulics and life-history of tropical dry forest tree species: coordination of species drought- and shade-tolerance. New Phytol 191:480–495.  https://doi.org/10.1111/j.1469-8137.2011.03708.x CrossRefPubMedGoogle Scholar
  55. Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11.  https://doi.org/10.1007/s00442-002-1088-0 CrossRefPubMedGoogle Scholar
  56. Moles AT, Falster DS, Leishman MR, Westoby M (2004) Small seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J Ecol 92:384–396.  https://doi.org/10.1111/j.0022-0477.2004.00880.x CrossRefGoogle Scholar
  57. Molino J-F, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:1702–1704.  https://doi.org/10.1126/science.1060284 CrossRefPubMedGoogle Scholar
  58. Morales G, Pérez R (2000) Gran Atlas Temático de Canarias. Editorial Interinsular CanariaGoogle Scholar
  59. Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees1. Biotropica 36:20–32.  https://doi.org/10.1646/02119 CrossRefGoogle Scholar
  60. Muller-Landau HC, Condit RS, Harms KE, Marks CO, Thomas SC, Bunyavejchewin S, Chuyong G, Co L, Davies S, Foster R et al (2006) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol Lett 9(5):589–602.  https://doi.org/10.1111/j.1461-0248.2006.00915.x CrossRefPubMedGoogle Scholar
  61. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142.  https://doi.org/10.1111/j.2041-210x.2012.00261.x CrossRefGoogle Scholar
  62. Niiyama K, Rahman KA, Iida S, Kimura K, Azizi R, Appanah S (1999) Spatial patterns of common tree species relating to topography, canopy gaps and understorey vegetation in a hill dipterocarp forest at Semangkok Forest Reserve, Peninsular Malaysia. J Trop For Sci 11:731–745. http://www.jstor.org/stable/43582322
  63. Ohsawa M, Nitta I (1999) Leaf traits and stomata of evergreen broad-leaved trees in Anaga cloud forest. In: Ohsawa M, Wildpret de la Torre W, Del Árco M (eds) Anaga cloud forest: a comparative study on evergreen broadleaved forests and trees of the Canary Islands and Japan, Chiba (Laboratory of Ecology, Chiba University), pp 223–246Google Scholar
  64. Parsons JJ (1981) Human influence on the pine and laurel forest of the Canary Islands. Geogr Rev 71:253–271. http://www.jstor.org/stable/214699
  65. Pélissier R, Goreaud F (2015) Ads package for R: a fast unbiased implementation of the K-function family for studying spatial point patterns in irregular-shaped sampling windows. J Stat Softw 63:1–18CrossRefGoogle Scholar
  66. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Cornwell WK, Craine JM et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.  https://doi.org/10.1071/BT12225 CrossRefGoogle Scholar
  67. Poorter L, Bongers F, Sterck FJ, Wöll H (2005) Beyond the regeneration phase: differentiation of height-light trajectories among tropical tree species. J Ecol 93(2):256–267.  https://doi.org/10.1111/j.1365-2745.2004.00956.x CrossRefGoogle Scholar
  68. Poorter L, Bongers L, Bongers F (2006) Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology 87(5):1289–1301.  https://doi.org/10.1890/0012-9658(2006)87%5b1289:AOMTST%5d2.0.CO;2 CrossRefPubMedGoogle Scholar
  69. Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588.  https://doi.org/10.1111/j.1469-8137.2009.02830.x CrossRefPubMedGoogle Scholar
  70. Pupo-Correia AMC (2016) Evolution of the Landscape of Madeira Island. Long-term vegetation dynamics. Ph.D. Thesis, Madeira UniversityGoogle Scholar
  71. Reich PB, Tjoelker MG, Machado J-L, Oleksyn J (2006) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439(7075):457–461.  https://doi.org/10.1038/nature04282 CrossRefPubMedGoogle Scholar
  72. Ripley BD (1977) Modeling spatial patterns (with discussion). J R Stat Soc Ser B (Methodological) 39:172–212. http://www.jstor.org/stable/2984796
  73. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  74. Rowe N, Speck T (2005) Plant growth forms: an ecological and evolutionary perspective. New Phytol 166:61–72.  https://doi.org/10.1111/j.1469-8137.2004.01309.x CrossRefPubMedGoogle Scholar
  75. Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004a) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550.  https://doi.org/10.1007/s00442-004-1624-1 CrossRefPubMedGoogle Scholar
  76. Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004b) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502.  https://doi.org/10.1007/s00442-004-1542-2 CrossRefPubMedGoogle Scholar
  77. Santos A (1990) Bosques de laurisilva en la regiόn macaronésica. Colecciόn Naturaleza y Medio Ambiente, No. 49, Council of Europe, StrasbourgGoogle Scholar
  78. Seidler TG, Plotkin JB (2006) Seed dispersal and spatial pattern in tropical trees. PLoS Biol 4:e344.  https://doi.org/10.1371/journal.pbio.0040344 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Suzuki E (1999) Diversity in specific gravity and water content of wood among Bornean tropical rainforest trees. Ecol Res 14:211–224.  https://doi.org/10.1046/j.1440-1703.1999.143301.x CrossRefGoogle Scholar
  80. Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Plant Ecol 75:81–86.  https://doi.org/10.1007/BF00044629 CrossRefGoogle Scholar
  81. ter Steege H, Hammond DS (2001) Character convergence, diversity, and disturbance in tropical rain forest in Guyana. Ecology 82(11):3197–3212.  https://doi.org/10.1890/0012-9658(2001)082%5b3197:CCDADI%5d2.0.CO;2 CrossRefGoogle Scholar
  82. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Biol 40:19–36.  https://doi.org/10.1146/annurev.pp.40.060189.000315 CrossRefGoogle Scholar
  83. Uhl C, Jordan CF (1984) Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65:1476–1490.  https://doi.org/10.2307/1939128 CrossRefGoogle Scholar
  84. Westoby M (1984) The self-thinning rule. Adv Ecol Res 14:167–225CrossRefGoogle Scholar
  85. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:21–227.  https://doi.org/10.1023/A:1004327224729 CrossRefGoogle Scholar
  86. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159.  https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  87. Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–538. http://www.jstor.org/stable/1940195
  88. Wright SJ, Muller-Landau HC, Condit R, Hubbell SP (2003) Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:3174–3185.  https://doi.org/10.1890/02-0038 CrossRefGoogle Scholar
  89. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de CienciasUniversidad de La LagunaLa LagunaSpain
  2. 2.UMR Peuplements Végétaux et Bioagresseurs en Milieu TropicalUniversité de la RéunionSaint DenisFrance

Personalised recommendations