Assessing the roles of temperature, carbon inputs and airborne pollen as drivers of fructification in European temperate deciduous forests

  • François Lebourgeois
  • Nicolas Delpierre
  • Eric Dufrêne
  • Sébastien Cecchini
  • Sébastien Macé
  • Luc Croisé
  • Manuel Nicolas
Original Paper
  • 111 Downloads

Abstract

We aimed at identifying which drivers control the spatio-temporal variability of fruit production in three major European temperate deciduous tree species: Quercus robur, Quercus petraea and Fagus sylvatica. We analysed the relations of fruit production with airborne pollen, carbon and water resources and meteorological data in 48 French forests over 14 years (1994–2007). In oak, acorn production was mainly related to temperature conditions during the pollen emission period, supporting the pollen synchrony hypothesis. In beech, a temperature signal over the two previous years eclipsed the airborne pollen load. Fruit production in Quercus and Fagus was related to climate drivers, carbon inputs and airborne pollen through strongly nonlinear, genus-specific relations. Quercus and Fagus also differed as regards the secondary growth versus fructification trade-off. While negative relationships were observed between secondary growth and fruit production in beech, more productive years benefited to both secondary growth and reproductive effort in oak.

Keywords

Beech Temperate oaks Fructification Gross primary productivity Pollen Temperature Secondary growth 

Notes

Acknowledgements

This paper builds on data gathered over thousands of hours of field and technical work done by: the Office National des Forêts (ONF) foresters, who collected and classified litterfall data; and collaborators of the RNSA network who prepared and analysed pollen observation data. We warmly thank them for their work. We thank Hilaire Martin and Baco Said-Allaoui for their work on early related projects, Sebastien Daviller and Raphaël Aussenac for their helpful technical assistance, and Valentin Journé for pointing papers on the seasonality of fruit production in beech. Finally, we thank two anonymous reviewers for constructive comments that helped improving the paper.

Author’s contributions

FL, ND and ED designed the research. FL and ND analysed the data and wrote the manuscript, with inputs from ED, SC, SM, LC, and MN collected and prepared the fructification data. FL collected and prepared the ring width and climate data. ND prepared the CASTANEA simulations and the pollen data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10342_2018_1108_MOESM1_ESM.pdf (12 kb)
Online Resource 1 Ecological characteristics of the RENECOFOR network stands (PDF 12 kb)
10342_2018_1108_MOESM2_ESM.pdf (51 kb)
Online Resource 2 Climatic characteristics along the longitudinal gradient (PDF 51 kb)
10342_2018_1108_MOESM3_ESM.pdf (12 kb)
Online Resource 3 Crown, fruit production and phenology in the RENECOFOR network stands (PDF 12 kb)
10342_2018_1108_MOESM4_ESM.pdf (13 kb)
Online Resource 4 Dendrometric characteristics of the RENECOFOR network stands (PDF 12 kb)
10342_2018_1108_MOESM5_ESM.pdf (45 kb)
Online Resource 5 Partial dependence plots of the most important variables driving tree-ring width in oak stands (PDF 45 kb)
10342_2018_1108_MOESM6_ESM.pdf (62 kb)
Online Resource 6 Evaluation of the autocorrelation of the fruit (a) and pollen (b) time series (PDF 61 kb)
10342_2018_1108_MOESM7_ESM.pdf (531 kb)
Online Resource 7 Synchrony between stands and changes with distance (PDF 530 kb)
10342_2018_1108_MOESM8_ESM.pdf (13 kb)
Online Resource 8 Mean predicted acorn biomass obtained with the CGPW model versus observed values (PDF 12 kb)
10342_2018_1108_MOESM9_ESM.pdf (13 kb)
Online Resource 9 Mean predicted nut biomass obtained with the CGP* model versus observed values (PDF 12 kb)
10342_2018_1108_MOESM10_ESM.pdf (98 kb)
Online Resource 10 Length of the pollen emission window as related to temperature (PDF 98 kb)
10342_2018_1108_MOESM11_ESM.pdf (55 kb)
Online Resource 11 Percentages of the variance of the fructification datasets explained by statistical models (Figure) (PDF 54 kb)
10342_2018_1108_MOESM12_ESM.pdf (16 kb)
Online Resource 12 Percentages of the variance of the fructification datasets explained by statistical models (Table) (PDF 16 kb)
10342_2018_1108_MOESM13_ESM.pdf (35 kb)
Online Resource 13 Spatial variability of fruit crop in a temperate oak forest (FR-Fon, ICOS research station, www.barbeau.u-psud.fr) (PDF 34 kb)
10342_2018_1108_MOESM14_ESM.pdf (29 kb)
Online Resource 14 Partial dependence plots of the seven best significant predictors of fruit biomass for the 5 beech stands with tree-ring width data (PDF 29 kb)
10342_2018_1108_MOESM15_ESM.pdf (48 kb)
Online Resource 15 Minimal depth variable interactions (PDF 47 kb)

References

  1. Abe T, Tachiki Y, Kon H, Nagasaka A, Onodera K, Minamino K, Han QM, Satake A (2016) Parameterisation and validation of a resource budget model for masting using spatiotemporal flowering data of individual trees. Ecol Lett 19:1129–1139CrossRefPubMedGoogle Scholar
  2. Alla AQ, Camarero JJ, Maestro-Martinez M, Montserrat-Marti G (2012) Acorn production is linked to secondary growth but not to declining carbohydrate concentrations in current-year shoots of two oak species. Trees 26:841–850CrossRefGoogle Scholar
  3. Almeida-Neto M, Lewinsohn TM (2004) Small-scale spatial autocorrelation and the interpretation of relationships between phenological parameters. J Veg Sci 15:561–568CrossRefGoogle Scholar
  4. Askeyev OV, Tischin D, Sparks TH, Askeyev IV (2005) The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol 49:262–266CrossRefPubMedGoogle Scholar
  5. Aubin I, Munson AD, Cardou F, Burton PJ, Isabel N, Pedlar JH, Paquette A, Taylor AR, Delagrange S, Kebli H et al (2016) Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ Rev 24:164–186CrossRefGoogle Scholar
  6. Benito-Garzon M, Fernandez-Manjarres J (2015) Testing scenarios for assisted migration of forest trees in Europe. New For 46:979–994CrossRefGoogle Scholar
  7. Bogdziewicz M, Fernandez-Martinez M, Bonal R, Belmonte J, Espelta JM (2017a) The Moran effect and environmental vetoes: phenological synchrony and drought drive seed production in a Mediterranean oak. Proce R Soc B Biol Sci 284:20171784CrossRefGoogle Scholar
  8. Bogdziewicz M, Szymkowiak J, Kasprzyk I, Grewling L, Borowski Z, Borycka K, Kantorowicz W, Myszkowska D, Piotrowicz K, Ziemianin M, Pesendorfer MB (2017b) Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production. Ecology 98:2615–2625CrossRefPubMedGoogle Scholar
  9. Bonnet-Masimbert M (1984) Biologie florale et cycle de reproduction de quelques arbres forestiers. Douglas, pin sylvestre, chêne. In: Pesson P, Louveaux J (eds) Pollinisation et productions végétales. INRA éditions, Paris, pp 219–242Google Scholar
  10. Breiman L (2001) RandomForests. Mach Learn 45:5–32CrossRefGoogle Scholar
  11. Brêthes A, Ulrich E, Lanier M, Clausse M, Colombet M, Curt T, Delahaye-Panchout M, Bermaux B, Douzon G, Duthy X, Guitton J, Nouals D, Savoie JM, Sinet JF, Poulin F, Musch J (1997) Caractéristiques pédologiques des 102 peuplements du réseau. Office National des Forêts, ParisGoogle Scholar
  12. Crone EE, Rapp JM (2014) Resource depletion, pollen coupling, and the ecology of mast seeding. In: Ostfeld RS, Power AG (eds) Year in ecology and conservation biology. Wiley, New York, pp 21–34Google Scholar
  13. Davi H, Barbaroux C, Francois C, Dufrene E (2009) The fundamental role of reserves and hydraulic constraints in predicting LAI and carbon allocation in forests. Agric For Meteorol 149:349–361CrossRefGoogle Scholar
  14. Delpierre N, Soudani K, Francois C, Le Maire G, Bernhofer C, Kutsch W, Misson L, Rambal S, Vesala T, Dufrene E (2012) Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agric For Meteorol 154:99–112CrossRefGoogle Scholar
  15. Delpierre N, Berveiller D, Granda E, Dufrene E (2016a) Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol 210:459–470CrossRefPubMedGoogle Scholar
  16. Delpierre N, Vitasse Y, Chuine I, Guillemot J, Bazot S, Rutishauser T, Rathgeber CBK (2016b) Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann For Sci 73:5–25CrossRefGoogle Scholar
  17. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, Marquez JRG, Gruber B, Lafourcade B, Leitao PJ, Munkemuller T, McClean C, Osborne PE, Reineking B, Schroder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  18. Drobyshev I, Overgaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259:2160–2171CrossRefGoogle Scholar
  19. Ducousso A, Michaud H, Lumaret R (1993) Reproduction and gene flow in the genus Quercus L. Ann For Sci 50:91s–106sCrossRefGoogle Scholar
  20. Dufrêne E, Davi H, François C, Le Maire G, Le Dantec V, Granier A (2005) Modelling carbon and water cycles in a beech forest Part I: model description and uncertainty analysis on modelled NEE. Ecol Model 185:407–436CrossRefGoogle Scholar
  21. Ehrlinger J (2015) ggRandomForests: random forests for regression. [WWW document] URL. Accessed 1 Sept 2016Google Scholar
  22. Evans JS, Murphy MA, Holden ZA, Cushman SA (2009) Modeling Species Distribution and Change Using Random Forest. C.A. Drew et al. (eds.), Predictive Species and Habitat Modeling in Landscape Ecology, Concepts and Applications,  https://doi.org/10.1007/978-1-4419-7390-0_8, Springer Science + Business Media, LLC 2011, 139-159
  23. Fearer TM, Norman GW, Pack JC Sr, Bittner S, Healy WM (2008) Influence of physiographic and climatic factors on spatial patterns of acorn production in Maryland and Virginia, USA. J Biogeogr 35:2012–2025CrossRefGoogle Scholar
  24. Fernandez-Martinez M, Belmonte J, Espelta JM (2012) Masting in oaks: disentangling the effect of flowering phenology, airborne pollen load and drought. Acta Oecol 43:51–59CrossRefGoogle Scholar
  25. Fernández-Martínez M, Vicca S, Janssens IA, Espelta JM, Peñuelas J (2017) The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography 40:864–874CrossRefGoogle Scholar
  26. Geburek T, Hiess K, Litschauer R, Milasowszky N (2012) Temporal pollen pattern in temperate trees: expedience or fate? Oikos 121:1603–1612CrossRefGoogle Scholar
  27. George SS (2014) An overview of tree-ring width records across the Northern Hemisphere. Quat Sci Rev 95:132–150CrossRefGoogle Scholar
  28. Guillemot J, Delpierre N, Vallet P, François C, Martin-StPaul NK, Soudani K, Nicolas M, Badeau V, Dufrêne E (2014) Assessing the effects of management on forest growth across France: insights from a new functional—structural model. Ann Bot.  https://doi.org/10.1093/aob/mcu059 PubMedPubMedCentralGoogle Scholar
  29. Guillemot J, Martin-StPaul NK, Dufrêne E, François C, Soudani K, Ourcival JM, Delpierre N (2015) The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source–sink limitation of growth: implications for modelling. Biogeosciences 12:2773–2790CrossRefGoogle Scholar
  30. Guillemot J, Francois C, Hmimina G, Dufrêne E, Martin-StPaul NK, Soudani K, Marie G, Ourcival JM, Delpierre N (2017) Environmental control of carbon allocation matters for modelling forest growth. New Phytol 214:180–193CrossRefPubMedGoogle Scholar
  31. Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol 35:319–330CrossRefPubMedGoogle Scholar
  32. Han Q, Kabeya D (2017) Recent developments in understanding mast seeding in relation to dynamics of carbon and nitrogen resources in temperate trees. Ecol Res.  https://doi.org/10.1007/s11284-017-1494-8:1-8 Google Scholar
  33. Han Q, Kabeya D, Iio A, Inagaki Y, Kakubari Y (2014) Nitrogen storage dynamics are affected by masting events in Fagus crenata. Oecologia 174:679–687CrossRefPubMedGoogle Scholar
  34. Hedhly A, Hormaza JI, Herrero M (2007) Warm temperatures at bloom reduce fruit set in sweet cherry. J Appl Bot Food Qual 81:158–164Google Scholar
  35. Hoch G, Siegwolf RTW, Keel SG, Korner C, Han QM (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171:653–662CrossRefPubMedGoogle Scholar
  36. Hsiao TC, Acevedo E (1974) Plant responses to water deficits, water-use efficiency and drought resistance. Agric Meteorol 14:59–84CrossRefGoogle Scholar
  37. Hurrell JW, Deser C (2010) North Atlantic climate variability: the role of the North Atlantic oscillation. J Mar Syst 79:231–244CrossRefGoogle Scholar
  38. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. The North Atlantic oscillation: climatic significance and environmental impact. Geophys Monogr 134:1–35Google Scholar
  39. Ichie T, Igarashi S, Yoshida S, Kenzo T, Masaki T, Tayasu I (2013) Are stored carbohydrates necessary for seed production in temperate deciduous trees? J Ecol 101:525–531CrossRefGoogle Scholar
  40. Ishwaran E (2007) Variable importance in binary regression trees and forests. Electron J Stat 1:519–537CrossRefGoogle Scholar
  41. Kasprzyk I, Ortyl B, Dulska-Jez A (2014) Relationships among weather parameters, airborne pollen and seed crops of Fagus and Quercus in Poland. Agr For Meteorol 197:111–122CrossRefGoogle Scholar
  42. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470CrossRefPubMedGoogle Scholar
  43. Kelly D, Sork VL (2002) Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  44. Kelly D, Geldenhuis A, James A, Holland EP, Plank MJ, Brockie RE, Cowan PE, Harper GA, Lee WG, Maitland MJ, Mark AF, Mills JA, Wilson PR, Byrom AE (2013) Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol Lett 16:90–98CrossRefPubMedGoogle Scholar
  45. Knops JMH, Koenig WD, Carmen WJ (2007) Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. P Natl Acad Sci 104:16982–16985CrossRefGoogle Scholar
  46. Koenig WD, Knops JMH (2000) Patterns of annual seed production by northern hemisphere trees: a global perspective. Am Nat 155:59–69CrossRefPubMedGoogle Scholar
  47. Koenig WD, Knops JMH, Carmen WJ, Stanback MT, Mumme RL (1996) Acorn production by oaks in central coastal California: influence of weather at three levels. Can J For Res 26:1677–1683CrossRefGoogle Scholar
  48. Koenig WD, Knops JMH, Carmen WJ, Pearse IS (2015) What drives masting? The phenological synchrony hypothesis. Ecology 96:184–192CrossRefPubMedGoogle Scholar
  49. Kon H, Noda T, Terazawa K, Koyarna H, Yasaka M (2005) Proximate factors causing mast seeding in Fagus crenata: the effects of resource level and weather cues. Can J Bot 83:1402–1409CrossRefGoogle Scholar
  50. Koralewski TE, Wang HH, Grant WE, Byram TD (2015) Plants on the move: assisted migration of forest trees in the face of climate change. For Ecol Manag 344:30–37CrossRefGoogle Scholar
  51. Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114CrossRefPubMedGoogle Scholar
  52. Lebourgeois F, Piedallu C (2005) Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière à partir d’indices bioclimatiques. Rev For Fr 57:331–356CrossRefGoogle Scholar
  53. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401CrossRefGoogle Scholar
  54. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving GCMs. Int J Biometeorol 54:563–581CrossRefPubMedGoogle Scholar
  55. Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303:61–71CrossRefGoogle Scholar
  56. Lebret M, Nys C, Forgeard F (2001) Litter production in an Atlantic beech (Fagus sylvatica L.) time sequence. Ann For Sci 58:755–768CrossRefGoogle Scholar
  57. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2–3:18–22Google Scholar
  58. Lin Y, Jeon Y (2006) Random forests and adaptive nearest neighbors. J Am Stat Assoc 101:578–590CrossRefGoogle Scholar
  59. Lyles D, Rosenstock TS, Hastings A (2015) Plant reproduction and environmental noise: how do plants do it? J Theor Biol 371:137–144CrossRefPubMedGoogle Scholar
  60. Mares I, Mares C, Mihailescu M (2002) NAO impact on the summer moisture variability across Europe. Phys Chem Earth 27:1013–1017CrossRefGoogle Scholar
  61. Martin D, Vazquez-Pique J, Carevic FS, Fernandez M, Alejano R (2015) Trade-off between stem growth and acorn production in holm oak. Trees 29:825–834CrossRefGoogle Scholar
  62. McLaughlin JM, Greene DW (1991) Fruit and hormones influence flowering of apple. II. Effects of hormones. J Am Soc Hort Sci 116:450–453Google Scholar
  63. Menzel A, Sparks TH, Estrella N, Eckhardt S (2005) ‘SSW to NNE’—North Atlantic Oscillation affects the progress of seasons across Europe. Glob Change Biol 11:909–918CrossRefGoogle Scholar
  64. Mérian P, Bontemps JD, Bergès L, Lebourgeois F (2011) Spatial variation and temporal instability in climate-growth relationships of sessile oak (Quercus petraea [Matt.] Liebl.) under temperate conditions. Plant Ecol 212:1855–1871CrossRefGoogle Scholar
  65. Misson L, Degueldre D, Collin C, Rodriguez R, Rocheteau A, Ourcival JM, Rambal S (2011) Phenological responses to extreme droughts in a Mediterranean forest. Glob Change Biol 17:1036–1048CrossRefGoogle Scholar
  66. Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, Shimizu KK, Mochida K, Hiura T, Kon H, Satake A (2014) Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecol Lett 17:1299–1309CrossRefPubMedGoogle Scholar
  67. Monks A, Kelly D (2006) Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol 31:366–375CrossRefGoogle Scholar
  68. Monks A, Monks JM, Tanentzap AJ (2016) Resource limitation underlying multiple masting models makes mast seeding sensitive to future climate change. New Phytol 210:419–430CrossRefPubMedGoogle Scholar
  69. Mueller-Haubold H, Hertel D, Seidel D, Knutzen F, Leuschner C (2013) Climate responses of aboveground productivity and allocation in Fagus sylvatica: a transect study in mature forests. Ecosystems 16:1498–1516CrossRefGoogle Scholar
  70. Mueller-Haubold H, Hertel D, Leuschner C (2015) Climatic drivers of mast fruiting in European beech and resulting C and N allocation shifts. Ecosystems 18:1083–1100CrossRefGoogle Scholar
  71. Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704CrossRefPubMedGoogle Scholar
  72. Nussbaumer A, Waldner P, Etzold S, Gessler A, Benham S, Thomsen IM, Jorgensen BB, Timmermann V, Verstraeten A, Sioen G et al (2016) Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe. For Ecol Manag 363:237–251CrossRefGoogle Scholar
  73. Oddou-Muratorio S, Davi H (2014) Simulating local adaptation to climate of forest trees with a Physio-demo-genetics model. Evol Appl 7:453–467CrossRefPubMedPubMedCentralGoogle Scholar
  74. Oshiro TM, Perez PS, Baranauskas JA (2012) How many trees in a random forest? Mach Learn Data Min Pattern Recognit 7376:154–168CrossRefGoogle Scholar
  75. Oswald H (1984) Floraison, pollinisation et fructification chez le Hêtre (Fagus sylvatica L.). In: Pesson P, Louveaux J (eds) Pollinisation et productions végétales. INRA éditions, Paris, pp 243–258Google Scholar
  76. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14CrossRefPubMedGoogle Scholar
  77. Pearse IS, Koenig WD, Knops JMH (2014) Cues versus proximate drivers: testing the mechanism behind masting behavior. Oikos 123:179–184CrossRefGoogle Scholar
  78. Pearse IS, Koenig WD, Funk KA, Pesendorfer MB (2015) Pollen limitation and flower abortion in a wind-pollinated, masting tree. Ecology 96:587–593CrossRefPubMedGoogle Scholar
  79. Pearse IS, Koenig WD, Kelly D (2016) Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol 212:546–562CrossRefPubMedGoogle Scholar
  80. Peaucelle M (2011) Time trends in forest litterfall production and relationships with environmental changes: an exploratory approach on data collected from 1995 to 2007 in the RENECOFOR monitoring network. Office National des Forêts, Département des Recherches Techniques, FranceGoogle Scholar
  81. Perez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91:3057–3068CrossRefPubMedGoogle Scholar
  82. Piedallu C, Gégout JC, Bruand A, Seynave I (2011) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 160:355–366CrossRefGoogle Scholar
  83. Piedallu C, Gégout JC, Lebourgeois F, Seynave I (2016) Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. J Veg Sci 27:387–399CrossRefGoogle Scholar
  84. Prasad AM, Iverson LR, Liaw (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  85. Rapp JM, McIntire EJB, Crone EE (2013) Sex allocation, pollen limitation and masting in whitebark pine. J Ecol 101:1345–1352CrossRefGoogle Scholar
  86. Satake A, Bjornstad ON (2008) A resource budget model to explain intraspecific variation in mast reproductive dynamics. Ecol Res 23:3–10CrossRefGoogle Scholar
  87. Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  88. Sharp WM, Sprague VG (1967) Flowering and fruiting in white oaks, pistillate flowering acorn development weather and yields. Ecology 48:243–251CrossRefGoogle Scholar
  89. Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linnean Soc 14:235–250CrossRefGoogle Scholar
  90. Smaill SJ, Clinton PW, Allen RB, Davis MR (2011) Climate cues and resources interact to determine seed production by a masting species. J Ecol 99:870–877CrossRefGoogle Scholar
  91. Sork V, Bramble J (1993) Prediction of acorn crops in three species of North American oaks: Quercus alba, Q rubra and Q velutina. Ann For Sci 50:128s–136sCrossRefGoogle Scholar
  92. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc Biol Sci 270:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  93. Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14:323–348CrossRefPubMedPubMedCentralGoogle Scholar
  94. Thornthwaite CW, Mather JR (1955) The water balance, vol 8. Drexel Institute of Climatology Laboratory, Climatology publication, Centerton, pp 1–104Google Scholar
  95. Trouvé R, Bontemps JD, Seynave I, Collet C, Lebourgeois F (2015) Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.). Tree Physiol 35:1035–1046CrossRefPubMedGoogle Scholar
  96. Ulrich E (1995) Le réseau RENECOFOR: objectifs et réalisation. Rev For Fr 47:107–124CrossRefGoogle Scholar
  97. Vacchiano G, Hacket-Pain A, Turco M, Motta R, Maringer J, Conedera M, Drobyshev I, Ascoli D (2017) Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol.  https://doi.org/10.1111/nph.14600 PubMedGoogle Scholar
  98. Vander Wall SB (2001) The evolutionary ecology of nut dispersal. Bot Rev 67:74–117CrossRefGoogle Scholar
  99. Vidal J-P, Martin E, Franchisteguy L, Baillon M, Soubeyroux J-M (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644CrossRefGoogle Scholar
  100. Vitasse Y, Schneider L, Rixen C, Christen D, Rebetez M (2018) Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric For Meteorol 248:60–69CrossRefGoogle Scholar
  101. Wesolowski T, Rowinski P, Maziarz M (2015) Interannual variation in tree seed production in a primeval temperate forest: does masting prevail? Eur J For Res 134:99–112CrossRefGoogle Scholar
  102. Wright SJ, Carrasco C, Calderon O, Paton S (1999) The El Nino Southern Oscillation variable fruit production, and famine in a tropical forest. Ecology 80:1632–1647Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.AgroParisTech, INRA, UMR SilvaUniversité de LorraineNancyFrance
  2. 2.Écologie Systématique Évolution, Université Paris-Sud, CNRS, AgroParisTechUniversité Paris-SaclayOrsayFrance
  3. 3.Département recherche, développement, innovationOffice National des Forêts, Direction forêts et risques naturelsFontainebleauFrance

Personalised recommendations