European Journal of Forest Research

, Volume 137, Issue 1, pp 79–92 | Cite as

Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution

  • Karl H. MellertEmail author
  • Jonathan Lenoir
  • Susanne Winter
  • Christian Kölling
  • Andraž Čarni
  • Isabel Dorado-Liñán
  • Jean-Claude Gégout
  • Axel Göttlein
  • Daniel Hornstein
  • Matthias Jantsch
  • Nina Juvan
  • Eckart Kolb
  • Eduardo López-Senespleda
  • Annette Menzel
  • Dejan Stojanović
  • Steffen Täger
  • Ioannis Tsiripidis
  • Thomas Wohlgemuth
  • Joerg Ewald
Original Paper


Based on macroecological data, we test the hypothesis whether European tree species of temperate and boreal distribution maintain their water and nutrient supply in the more arid southern margin of their distribution range by shifting to more fertile soils with higher water storage than in their humid core distribution range (cf. soil compensatory effects). To answer this question, we gathered a large dataset with more than 200,000 plots that we related to summer aridity (SA), derived from WorldClim data, as well as soil available water capacity (AWC) and soil nutrient status, derived from the European soil database. The soil compensatory effects on tree species distribution were tested through generalized additive models. The hypothesis of soil compensatory effects on tree species distribution under limiting aridity was supported in terms of statistical significance and plausibility. Compared to a bioclimatic baseline model, inclusion of soil variables systematically improved the models’ goodness of fit. However, the relevance measured as the gain in predictive performance was small, with largest improvements for P. sylvestris, Q. petraea and A. alba. All studied species, except P. sylvestris, preferred high AWC under high SA. For F. sylvatica, P. abies and Q. petraea, the compensatory effect of soil AWC under high SA was even more pronounced on acidic soils. Soil compensatory effects might have decisive implications for tree species redistribution and forest management strategies under anthropogenic climate change. Therefore, soil compensatory effects deserve more intensive investigation, ideally, in studies combining different spatial scales to reduce the uncertainty associated with the precision of soil information.


Climatic aridity Edaphic conditions European soil database Forest ecosystems Macroecology Soil nutrient status 



Available water capacity


Tolerances to drought


Ellenberg’s climate quotient


Modified EQ


European soil database


Decimal logarithm from EQm


Relative site constancy


Summer aridity


Species distribution model


Tolerances to shade


Soil nutrient status



This study was funded by the Federal Ministry of Food and Agriculture as well as the Federal Environment Ministry of Germany (project number 28WB4058) and the Bavarian State Forest Administration (project number W42), an authority of the Ministry for Nutrition, Agriculture and Forestry. We acknowledge ICP Forests and the involved country representatives for providing Level-I data. Our thanks also go to Nikolaos Grigoriadis from Greece, Aleksander Marinšek, Alexey Zharov from Germany and Doganay Tolunay from Turkey for data provision. However, the Turkish data could not be used in this analysis, as the ESDB do not contain soil data from this country. Additionally, we are deeply indebted to our colleagues, Solti György, Markus Neumann and Heino Polley for providing us access to the national forest inventories of Hungary, Austria and Germany, respectively, as well as Monika Konnert (Bavarian Institution for Forest Seeding and Planting) for providing data from provenance plots. Furthermore, we thank all other contributors of vegetation databases and other data sources as well as two anonymous reviewers whose comments helped to clarify important issues.

Supplementary material

10342_2017_1092_MOESM1_ESM.doc (3.9 mb)
Supplementary material 1 (DOC 3973 kb)


  1. Alonso-Ponce R, López Senespleda E, Sánchez Palomares O (2010) A novel application of the ecological field theory to the definition of physiographic and climatic potential areas of forest species. Eur J For Res 129:119–131CrossRefGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  3. Attorre F, Alfò M, de Sanctis M et al (2011) Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl Veg Sci 14:242–255CrossRefGoogle Scholar
  4. Austin MP (1980) Searching for a model for use in vegetation analysis. Vegetatio 42:11–21CrossRefGoogle Scholar
  5. Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol Monogr 60:161–177CrossRefGoogle Scholar
  6. Bailey RG (1987) Suggested hierarchy of criteria for multi-scale ecosystem mapping. Landsc Urb Plan 14:313–319CrossRefGoogle Scholar
  7. Barbet-Massin M, Jiguet F, Albert CH et al (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  8. Barnes BV, Pregitzer KS, Spies TA et al (1982) Ecological forest site classification. J For 80:493–498Google Scholar
  9. Beauregard F, de Blois S (2014) Beyond a climate-centric view of plant distribution: edaphic variables add value to distribution models. PLoS ONE 9:e92642CrossRefPubMedPubMedCentralGoogle Scholar
  10. Benito-Garzón M, Ruiz-Benito P, Zavala MA (2013) Interspecific differences in tree growth and mortality responses to environmental drivers determine potential species distributional limits in Iberian forests. Global Ecol Biogeogr 22:1141–1151CrossRefGoogle Scholar
  11. Bertrand R, Perez V, Gégout J-C (2012) Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Glob Change Biol 18:2648–2660CrossRefGoogle Scholar
  12. Binkley D, Vitousek P (1989) Soil nutrient availability. In: Pearcy RW, Ehleringer JR, Mooney HA et al (eds) Plant physiological ecology field methods and instrumentation. Springer, Dordrecht, pp 75–96CrossRefGoogle Scholar
  13. Blume H-P, Brümmer GW, Fleige H et al (2016) Scheffer/Schachtschabel soil science. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  14. Bohn U, Neuhäusl R, Gollub G, Hettwer C, Neuhäuslova Z, Raus T, Schlüter H, Weber H (2003) Map of the natural vegetation of Europe, scale 1:2500000. Parts 1–3. Landwirtschaftsverlag, Münster-HiltrupGoogle Scholar
  15. Bradbury IK, Malcolm DC (1977) The effect of phosphorus and potassium on transpiration, leaf diffusive resistance and water-use efficiency in Sitka spruce (Picea sitchensis) seedlings. J Appl Ecol 14:631–641Google Scholar
  16. Bréda N, Huc R, Granier A et al (2006) Temperate forest trees and stands under severe drought. A review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  17. Brus DJ, Hengeveld GM, Walvoort DJ et al (2011) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157CrossRefGoogle Scholar
  18. Bussotti F, Pollastrini M (2017) Observing climate change impacts on European forests: what works and what does not in ongoing long-term monitoring networks. Front Plant Sci 8:1–5Google Scholar
  19. Cajander AK (1949) Forest types and their significance. Acta For Fennica 56:1–71Google Scholar
  20. Caudullo G, Tinner W, de Rigo D (2016) Picea abies in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publ. Off. EU, Luxembourg, p e012300+Google Scholar
  21. Coudun C, Gégout J-C, Piedallu C et al (2006) Soil nutritional factors improve models of plant species distribution. An illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–1763CrossRefGoogle Scholar
  22. Czúcz B, Gálhidy L, Mátyás C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann For Sci 68:99–108CrossRefGoogle Scholar
  23. Diekmann M, Michaelis J, Pannek A (2015) Know your limits—the need for better data on species responses to soil variables. Basic Appl Ecol 16:563–572CrossRefGoogle Scholar
  24. Dolos K, Bauer A, Albrecht S (2015) Site suitability for tree species. Is there a positive relation between a tree species’ occurrence and its growth? Eur J For Res 134:609–621CrossRefGoogle Scholar
  25. Dubuis A, Giovanettina S, Pellissier L et al (2013) Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci 24:593–606CrossRefGoogle Scholar
  26. Ducousso A, Bordacs S (2004) EUFORGEN technical guidelines for genetic conservation and use for pedunculate and sessile oaks, Quercus robur and Q. petraea. European Forest Genetic Resources Programme, International Plant Genetic Resources Institute, Rome  Google Scholar
  27. Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622CrossRefGoogle Scholar
  28. Ellenberg H (1988) Vegetation ecology of central Europe. Cambridge University Press, CambridgeGoogle Scholar
  29. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  30. Ewald J, Hédl R (2014) Spatial modeling of vegetation potential: an introduction. Folia Geobot 49:309–312CrossRefGoogle Scholar
  31. Falk W, Mellert KH (2011) Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. J Veg Sci 22:621–634CrossRefGoogle Scholar
  32. Falk W, Mellert K, Bachmann-Gigl U et al (2013) Bäume für die Zukunft: baumartenwahl auf wissenschaftlicher Grundlage. LWF aktuell 94:8Google Scholar
  33. Fang J, Lechowicz MJ (2006) Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–1819CrossRefGoogle Scholar
  34. Fischer R, Lorenz M, Granke O et al Forest condition in Europe: 2010 technical report of ICP forests. Executive Report. ICP Forests and European Commission, HamburgGoogle Scholar
  35. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Freeman EA, Moisen G (2008) Presence absence: an R package for presence-absence model analysis. J Stat Softw 23:1–31CrossRefGoogle Scholar
  37. Golub GH, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215–223CrossRefGoogle Scholar
  38. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  39. Halvorsen R (2012) A gradient analytic perspective on distribution modelling. Sommerfeltia 35:1–165CrossRefGoogle Scholar
  40. Hanewinkel M, Cullmann DA, Michiels H-G et al (2014) Converting probabilistic tree species range shift projections into meaningful classes for management. J Environ Manag 134:153–165CrossRefGoogle Scholar
  41. Hiederer R (2013) Mapping soil properties for Europe—spatial representation of soil database attributes. Publications Office of the European Union. EUR26082EN Scientific and Technical Research series, LuxembourgGoogle Scholar
  42. Hijmans RJ, van Etten J (2014) Raster: geographic data analysis and modeling. R package vers 2.2–31.
  43. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  44. Hlásny T, Mátyás C, Seidl R et al (2014) Climate change increases the drought risk in Central European forests: what are the options for adaptation? For J 60:5–18Google Scholar
  45. Kölling C, Hoffmann M, Gulder H-J (1996) Bodenchemische Vertikalgradienten als charakteristische zustandsgrössen von waldökosystemen. Z Pflanz Bodenkunde 159:69–77CrossRefGoogle Scholar
  46. Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69Google Scholar
  47. Lakatos F, Molnár M (2009) Mass mortality of beech (Fagus sylvatica L.) in South-West Hungary. Acta Silvatica et Lignaria Hungarica 5:75–82Google Scholar
  48. Latron J, Llorens P, Gallart F (2009) The hydrology of Mediterranean mountain areas. Geogr Compass 3:2045–2064CrossRefGoogle Scholar
  49. Leibundgut H (1984) Unsere Waldbäume. Eigenschaften und Leben. Huber, FrauenfeldGoogle Scholar
  50. Lenoir J, Svenning J-C (2015) Climate-related range shifts–a global multidimensional synthesis and new research directions. Ecography 38:15–28CrossRefGoogle Scholar
  51. Lenoir J, Svenning J-C, Dullinger S et al (2012) The Alps vegetation database–a geo-referenced community-level archive of all terrestrial plants occurring in the Alps. Biodivers Ecol 4:331–332CrossRefGoogle Scholar
  52. Lenoir J, Hattab T, Pierre G (2017) Climatic microrefugia under anthropogenic climate change: implications for species redistribution. Ecography 40:253–266CrossRefGoogle Scholar
  53. Leuschner C, Köckemann B, Buschmann H (2009) Abundance, niche breadth, and niche occupation of Central European tree species in the centre and at the margin of their distribution range. For Ecol Manag 258:1248–1259CrossRefGoogle Scholar
  54. Ligot G, Balandier P, Fayolle A et al (2013) Height competition between Quercus petraea and Fagus sylvatica natural regeneration in mixed and uneven-aged stands. For Ecol Manag 304:391–398CrossRefGoogle Scholar
  55. Liu C, Berry PM, Dawson TP et al (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3):385–393CrossRefGoogle Scholar
  56. Lopez-Senespleda E, Montero G (2015) Tipificación Ecológico-Selvícola de las Principales Especies Forestales Españolas, INIA-CIFOR, Final Report, MadridGoogle Scholar
  57. Mátyás C, Ackzell L, Samuel CJA (2004) EUFORGEN technical guidelines for genetic conservation and use for Scots pine (Pinus sylvestris). European Forest Genetic Resources Programme, International Plant Genetic Resources Institute, RomeGoogle Scholar
  58. Mátyás C, Berki I, Czúcz B et al (2010) Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silvatica et Lignaria Hungarica 6:91–110Google Scholar
  59. Meier ES, Kienast F, Pearman PB et al (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048CrossRefGoogle Scholar
  60. Mellert KH, Ewald J (2014) Nutrient limitation and site-related growth potential of Norway spruce (Picea abies [L.] Karst) in the Bavarian Alps. Eur J For Res 133:433–451CrossRefGoogle Scholar
  61. Mellert KH, Göttlein A (2013) Identification and validation of thresholds and limiting nutrient factors of Norway spruce by using new nutritional levels and modern regression. Allg For Jagdztg 184:197–203Google Scholar
  62. Mellert KH, Fensterer V, Küchenhoff H et al (2011) Hypothesis-driven species distribution models for tree species in the Bavarian Alps. J Veg Sci 22:635–646CrossRefGoogle Scholar
  63. Mellert KH, Deffner V, Küchenhoff H et al (2015) Modeling sensitivity to climate change and estimating the uncertainty of its impact. A probabilistic concept for risk assessment in forestry. Ecol Model 316:211–216CrossRefGoogle Scholar
  64. Mellert KH, Ewald J, Hornstein D et al (2016) Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg’s quotient. Eur J For Res 135:137–152CrossRefGoogle Scholar
  65. Michel A, Seidling W, Lorenz M et al (2016) Forest Condition in Europe 2016. ICP Forests and European Commission, HamburgGoogle Scholar
  66. Nieto-Lugilde D, Lenoir J, Abdulhak S et al (2015) Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography 38:578–589CrossRefPubMedPubMedCentralGoogle Scholar
  67. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol Monogr 76:521–547CrossRefGoogle Scholar
  68. Panagos P, van Liedekerke M, Jones A et al (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy 29:329–338CrossRefGoogle Scholar
  69. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araúcho MB (2011) Ecological niches and geographic distributions (MPB-49). Princeton University PressGoogle Scholar
  70. Piedallu C, Gégout J, Perez V et al (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482CrossRefGoogle Scholar
  71. Piedallu C, Gégout J-C, Lebourgeois F et al (2016) Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. J Veg Sci 27:387–399CrossRefGoogle Scholar
  72. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  73. Rasztovits E, Moricz N, Berki I et al (2012) Evaluating the performance of stochastic distribution models for European beech at low-elevation xeric limits. Idojárás 116:173–194Google Scholar
  74. Sánchez De Dios R, Hernández L, Montes F et al (2016) Tracking the leading edge of Fagus sylvatica in North-Western Iberia: holocene migration inertia, forest succession and recent global change. Perspect Plant Ecol 20:11–21CrossRefGoogle Scholar
  75. Serra-Diaz JM, Keenan TF, Ninyerola M et al (2013) Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model. J Biogeogr 40:1928–1938Google Scholar
  76. Stojanović DB, Kržič A, Matović B et al (2013) Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model. An example from southeast Europe. Agr For Meteorol 176:94–103CrossRefGoogle Scholar
  77. Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293CrossRefGoogle Scholar
  78. Tegel W, Seim A, Hakelberg D et al (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71CrossRefGoogle Scholar
  79. Thuiller W (2013) On the importance of edaphic variables to predict plant species distributions—limits and prospects. J Veg Sci 24:591–592CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tsiripidis I, Bergmeier E, Fotiatidis G et al (2012) Hellenic beech forests database (Hell-Beech-DB). Biodivers Ecol 4:390CrossRefGoogle Scholar
  81. Walter H (1973) Vegetation of the earth in relation to climate and the eco-physiological conditions. Universities Press, LondonGoogle Scholar
  82. Whittaker RH (1970) Communities and ecosystems. Macmillan, LondonGoogle Scholar
  83. Wolf H (2003) EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). European Forest Genetic Resources Programme, International Plant Genetic Resources Institute, RomeGoogle Scholar
  84. Wood S (2006) Generalized additive models: an introduction with R. CRC Press, Boca RatonCrossRefGoogle Scholar
  85. Wood S (2017) Mixed GAM computation vehicle with automatic smoothness estimation. R package vers 1.8–22.
  86. Zimmermann NE, Jandl R, Hanewinkel M et al (2013) Chapter 4 potential future ranges of tree species in the Alps. In: Cerbu GA, Hanewinkel M, Gerosa G, Jandl R (eds) Management strategies to adapt alpine space forests to climate change risks, InTech, Chapters published August 28, 2013 under CC BY 3.0 license

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Karl H. Mellert
    • 1
    Email author
  • Jonathan Lenoir
    • 2
  • Susanne Winter
    • 3
  • Christian Kölling
    • 4
  • Andraž Čarni
    • 5
    • 6
  • Isabel Dorado-Liñán
    • 7
  • Jean-Claude Gégout
    • 8
  • Axel Göttlein
    • 1
  • Daniel Hornstein
    • 9
  • Matthias Jantsch
    • 10
  • Nina Juvan
    • 5
    • 6
  • Eckart Kolb
    • 1
  • Eduardo López-Senespleda
    • 7
  • Annette Menzel
    • 11
    • 12
  • Dejan Stojanović
    • 13
    • 14
  • Steffen Täger
    • 4
  • Ioannis Tsiripidis
    • 15
  • Thomas Wohlgemuth
    • 16
  • Joerg Ewald
    • 9
  1. 1.Forest Nutrition and Water ResourcesTechnical University of MunichFreisingGermany
  2. 2.UR “Ecologie et dynamique des systèmes anthropisés” (EDYSAN, FRE 3498 CNRS-UPJV)Université de Picardie Jules VerneAmiens Cedex 1France
  3. 3.WWF – World Wide Fund for NatureBerlinGermany
  4. 4.AELF RothRothGermany
  5. 5.Research Center of the Slovenian Academy of Sciences and ArtsInstitute of BiologyLjubljanaSlovenia
  6. 6.Univerza of Nova GoricaNova GoricaSlovenia
  7. 7.Forest Research CentreInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR)MadridSpain
  8. 8.LERFoBAgro Paris Tech, INRANancyFrance
  9. 9.Faculty of ForestryUniversity of Applied Sciences Weihenstephan TriesdorfFreisingGermany
  10. 10.Bayerische Landesanstalt für Wald und ForstwirtschaftFreisingGermany
  11. 11.EcoclimatologyTechnical University of MunichFreisingGermany
  12. 12.Institute for Advanced StudyGarchingGermany
  13. 13.Institute of Lowland Forestry and EnvironmentUniversity of Novi SadNovi SadSerbia
  14. 14.Faculty of AgricultureUniversity of Novi SadNovi SadSerbia
  15. 15.Department of Botany, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
  16. 16.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations