European Journal of Forest Research

, Volume 137, Issue 1, pp 17–27 | Cite as

Regeneration dynamics of mixed stands of Pinus pinaster Ait. and Pinus pinea L. in Central Spain

  • Daniel Moreno-Fernández
  • Fernando Montes
  • Mariola Sánchez-González
  • Francisco J. Gordo
  • Isabel Cañellas
Original Paper


The dynamics of mixed stands are more complex and less studied than those of monospecific stands. The objective of this work was to analyze the variables involved in seedling occurrence and seedling survival in mixed stands of Pinus pinaster and P. pinea in Mediterranean areas. From 2011 to 2016, regeneration of both species was monitored at two sites located in Central Spain. We installed 72 regeneration plots where seedling dynamics were monitored. All the trees in the study areas were measured and mapped. Additionally, we took hemispherical photographs in each regeneration plot. The average density of P. pinea seedlings over the study period was almost 20 times larger than that of P. pinaster. Our results indicate that the seedlings of both species grow under moderate light conditions. In addition, we found that the occurrence of seedlings of both species was related to the structure of the stand. P. pinea seedlings grew where the density and size of P. pinaster trees were low and where P. pinea trees provided moderately sheltered conditions, whereas the number of P. pinaster seedlings was related to under intermediate densities of P. pinaster trees. Furthermore, seedling survival was positively associated with age of the seedlings and negatively with the August average maximum temperature. The temporal continuity of mixed stands of P. pinea and P. pinaster in the study area is compromised by the observed lack of regeneration of P. pinaster.


Stand dynamics Shade tolerance Natural establishment Summer drought 



The authors wish to thank Ángel Bachiller and Estrella Viscasillas for the field work. We also thank Adam Collins for revising the English and the two reviewers who provided good comments to improve the quality of this paper. This work has been funded by the following projects: AGL2016-76769-C2-1-R and S2013/MAE-2760 BOSSANOVA-CM. D. Moreno-Fernández has also benefitted from a FPU predoctoral contract of the Ministry of Education, Culture and Sport (FPU13/02113). We are also grateful to Forest Service and forest owners for facilitating plot installation.

Supplementary material

10342_2017_1086_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)


  1. Ameztegui A, Coll L, Messier C (2015) Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: the case of montane–subalpine Pyrenean ecotones. Ecol Modell 313:84–93. CrossRefGoogle Scholar
  2. Awada T, Radoglou K, Fotelli MN, Constantinidou HIA (2003) Ecophysiology of seedlings of three Mediterranean pine species in contrasting light regimes. Tree Physiol 23:33–41CrossRefPubMedGoogle Scholar
  3. Barbeito I, Pardos M, Calama R, Cañellas I (2008) Effect of stand structure on Stone pine (Pinus pinea L.) regeneration dynamics. Forestry 81:617–629. CrossRefGoogle Scholar
  4. Barbeito I, Fortin M-J, Montes F, Cañellas I (2009) Response of pine natural regeneration to small-scale spatial variation in a managed Mediterranean mountain forest. Appl Veg Sci 12:488–503. CrossRefGoogle Scholar
  5. Bravo F, Maguire D, González-Martínez SC (2017) Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics. For Syst 26:e07S. CrossRefGoogle Scholar
  6. Bravo-Oviedo A, Montero G (2008) Desprición de los caracteres culturales de las principales especies forestales de España. In: Serrada R, Montero G, Reque JA (eds) Compendio de selvicultura aplicada en España. INIA and Ministerio de Educación y Ciencia, Madrid, p 1178Google Scholar
  7. Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manag 255:660–673. CrossRefGoogle Scholar
  8. Calama R, Mutke S, Tomé J et al (2011) Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecol Model 222:606–618. CrossRefGoogle Scholar
  9. Calama R, Madrigal G, Manso R et al (2012) Germinación, emergencia y supervivencia en Pinus pinea L. In: Gordo FJ, Calama R, Pardos M et al (eds) La regeneración natural de los pinares en los arenales de la meseta castellana. Instituto Universitario de Investigación en Gestión Forestal Sostenible, Valladolid, pp 115–129Google Scholar
  10. Calama R, Puértolas J, Manso R, Pardos M (2015) Defining the optimal regeneration niche for Pinus pinea L. through physiology-based models for seedling survival and carbon assimilation. Trees Struct Funct 29:1761–1771. CrossRefGoogle Scholar
  11. Calama R, Manso R, Lucas-Borja ME et al (2017) Natural regeneration in Iberian pines: a review of dynamic processes and proposals for management. For Syst 26:eR02S. CrossRefGoogle Scholar
  12. Calvo L, Santalla S, Luz A et al (2007) Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecol. CrossRefGoogle Scholar
  13. Castro J, Zamora R, Hodar JA et al (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12:352–358. CrossRefGoogle Scholar
  14. Cavender-Bares J, Bazzaz FA (2000) Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124:8–18. CrossRefPubMedGoogle Scholar
  15. De Castro M, Martín-Vide J, Alonso S (2005) The climate of Spain: past, present and scenarios for the 21st century. A preliminary assessment of the impacts in Spain due to the effects of climate change. ECCE Project-Final report. Ministerio de Medio Ambiente, MadridGoogle Scholar
  16. de-Dios-García J, Pardos M, Calama R (2015) Interannual variability in competitive effects in mixed and monospecific forests of Mediterranean stone pine. For Ecol Manag 358:230–239. CrossRefGoogle Scholar
  17. del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502p1–502p11. CrossRefGoogle Scholar
  18. Duchon J (1977) Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Schempp W, Zeller K (eds) Constructive theory of functions of several variables: proceedings of a conference held at Oberwolfach April 25–May 1, 1976. Springer, Berlin, pp 85–100Google Scholar
  19. Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. CRC Press, Boca RatonGoogle Scholar
  20. Felton A, Lindbladh M, Brunet J, Fritz Ö̈ (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. For Ecol Manag 260:939–947. CrossRefGoogle Scholar
  21. Fyllas NM, Dimitrakopoulos PG, Troumbis AY (2008) Regeneration dynamics of a mixed Mediterranean pine forest in the absence of fire. For Ecol Manag 256:1552–1559. CrossRefGoogle Scholar
  22. González-Alday J, Martínez-Ruiz C, Bravo F (2009) Evaluating different harvest intensities over understory plant diversity and pine seedlings, in a Pinus pinaster Ait. natural stand of Spain. Plant Ecol 201:211–220. CrossRefGoogle Scholar
  23. Gordo FJ (2004) Selección de grandes productores de fruto de Pinus pinea L. en la Meseta Norte. Universidad Politécnica de Madrid, MadridGoogle Scholar
  24. Gordo FJ, Rojo LI, Calama R et al (2012) Selvicultura de regeneración natural de Pinus pinea L. en montes públicos de la provincia de Valladolid. In: Gordo J, Calama R, Pardos M et al (eds) La regeneración natural de los pinares en los arenales de la meseta castellana. Instituto Universitario de Investigación en Gestión Forestal Sostenible, Valladolid, pp 145–159Google Scholar
  25. Hastie T, Tibshirani R (1989) Generalized additive models. Stat Sci 10:297–318. CrossRefGoogle Scholar
  26. Hein S, Dhôte J-F (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France. Ann For Sci 63:457–467. CrossRefGoogle Scholar
  27. Hurst JM, Allen RB, Coomes DA, Duncan RP (2011) Size-specific tree mortality varies with neighbourhood crowding and disturbance in a montane Nothofagus forest. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jactel H, Bauhus J, Boberg J et al (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep. CrossRefGoogle Scholar
  29. Juez L, González-Martínez SC, Nanos N et al (2014) Can seed production and restricted dispersal limit recruitment in Pinus pinaster Aiton from the Spanish Northern Plateau? For Ecol Manag 313:329–339. CrossRefGoogle Scholar
  30. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101. CrossRefGoogle Scholar
  31. Ledo A, Cañellas I, Barbeito I et al (2014) Species coexistence in a mixed Mediterranean pine forest: spatio-temporal variability in trade-offs between facilitation and competition. For Ecol Manag 322:89–97. CrossRefGoogle Scholar
  32. Lines ER, Coomes DA, Purves DW (2010) Influences of forest structure, climate and species composition on tree mortality across the Eastern US. PLoS ONE. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lis JA, Lis B, Gubernator J (2008) Will the invasive western conifer seed bug Leptoglossus occidentalis Heidemann (Hemiptera: Heteroptera: Coreidae) seize all of Europe? Zootaxa 1740:66–68Google Scholar
  34. Lucas-Borja ME, Candel-Pérez D, Onkelinx T et al (2017) Early Mediterranean pine recruitment in burned and unburned Pinus nigra Arn. ssp. salzmannii stands of central Spain: influence of species identity, provenances and post-dispersal predation. For Ecol Manag 390:203–211. CrossRefGoogle Scholar
  35. Manso R, Pardos M, Keyes CR, Calama R (2012) Modelling the spatio-temporal pattern of primary dispersal in stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ecol Model 226:11–21. CrossRefGoogle Scholar
  36. Manso R, Calama R, Madrigal G, Pardos M (2013a) A silviculture-oriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment. Eur J For Res 132:969–982. CrossRefGoogle Scholar
  37. Manso R, Fortin M, Calama R, Pardos M (2013b) Modelling seed germination in forest tree species through survival analysis: the Pinus pinea L. case study. For Ecol Manag 289:515–524. CrossRefGoogle Scholar
  38. Manso R, Pardos M, Calama R (2014a) Climatic factors control rodent seed predation in Pinus pinea L. stands in Central Spain. Ann For Sci 71:873–883. CrossRefGoogle Scholar
  39. Manso R, Pukkala T, Pardos M et al (2014b) Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can J For Res 44:250–262. CrossRefGoogle Scholar
  40. Miina J, Heinonen J (2008) Stochastic simulation of forest regeneration establishment using a multilevel multivariate model. For Sci 54:206–219. CrossRefGoogle Scholar
  41. Montero G, Calama R, Ruiz-Peinado R (2008) Selvicultura de Pinus pinea L. In: Montero G, Serrada R, Reque J (eds) Compendio de selvicultura aplicada en España. INIA-Fundación Conde del Valle Salazar, Madrid, pp 431–470Google Scholar
  42. Moreno-Fernández D, Cañellas I, Calama R et al (2013) Thinning increases cone production of stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ann For Sci 70:761–768. CrossRefGoogle Scholar
  43. Moreno-Fernández D, Cañellas I, Barbeito I et al (2015) Alternative approaches to assessing the natural regeneration of Scots pine in a Mediterranean forest. Ann For Sci 72:569–583. CrossRefGoogle Scholar
  44. Mueller RC, Scudder CM, Porter ME et al (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093. CrossRefGoogle Scholar
  45. Nanos N, Tadesse W, Montero G et al (2000) Modelling resin production distributions for Pinus Pinaster Ait using two probability functions. Ann For Sci 57:377–379. CrossRefGoogle Scholar
  46. Norman J, Ellingson L, Boman M, Mattsson L (2010) The value of forests for outdoor recreation in southern Sweden: are broadleaved trees important? Ecol Bull 53:21–42Google Scholar
  47. Paluch JG (2005) The influence of the spatial pattern of trees on forest floor vegetation and silver fir (Abies alba Mill.) regeneration in uneven-aged forests. For Ecol Manag 205:283–298. CrossRefGoogle Scholar
  48. Pausas JG, Ribeiro E, Vallejo R (2004) Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula. For Ecol Manag 203:251–259. CrossRefGoogle Scholar
  49. Peek MS, Russek-Cohen E, Wait DA, Forseth IN (2002) Physiological response curve analysis using nonlinear mixed models. Oecologia 132:175–180. CrossRefPubMedGoogle Scholar
  50. Pretzsch H, Bielak K, Block J et al (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132:263–280. CrossRefGoogle Scholar
  51. Prieto-Recio C, Martín-García J, Bravo F, Diez JJ (2015) Unravelling the associations between climate, soil properties and forest management in Pinus pinaster decline in the Iberian Peninsula. For Ecol Manag 356:74–83. CrossRefGoogle Scholar
  52. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  53. Rodríguez-García E, Juez L, Bravo F (2010) Environmental influences on post-harvest natural regeneration of Pinus pinaster Ait. in Mediterranean forest stands submitted to the seed-tree selection method. Eur J For Res 129:1119–1128. CrossRefGoogle Scholar
  54. Rodríguez-García E, Bravo F, Spies TA (2011a) Effects of overstorey canopy, plant-plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251. CrossRefGoogle Scholar
  55. Rodríguez-García E, Gratzer G, Bravo F (2011b) Climatic variability and other site factor influences on natural regeneration of Pinus pinaster Ait. in Mediterranean forests. Ann For Sci 68:811–823. CrossRefGoogle Scholar
  56. Ruano I, Pando V, Bravo F (2009) How do light and water influence Pinus pinaster Ait. germination and early seedling development? For Ecol Manag 258:2647–2653. CrossRefGoogle Scholar
  57. Ruano I, del Peso C, Bravo F (2015a) Post-dispersal predation of Pinus pinaster Aiton seeds: key factors and effects on belowground seed bank. Eur J For Res 134:309–318. CrossRefGoogle Scholar
  58. Ruano I, Manso R, Fortin M, Bravo F (2015b) Extreme climate conditions limit seed availability to successfully attain natural regeneration of Pinus pinaster in sandy areas of central Spain. Can J For Res 1802:1795–1802. CrossRefGoogle Scholar
  59. Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S et al (2014) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:44001. CrossRefGoogle Scholar
  60. Wada N, Ribbens E (1997) Japanese maple (Acer palmatum var. matsumurae, Aceraceae) recuitment patterns: seeds, seedlings and salings in relation to conspecific adult neighbors. Oikos 84:1294–1300Google Scholar
  61. Wood SN (2003) Thin-plate regression splines. J R Stat Soc 65:95–114. CrossRefGoogle Scholar
  62. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B Stat Methodol 73:3–36. CrossRefGoogle Scholar
  63. Woods KD, Acer K (1984) Patterns of tree replacement: canopy effects on understory pattern in hemlock—northern hardwood forests. Vegetatio 56:87–107Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.INIA-CIFORMadridSpain
  2. 2.MONTES (School of Forest Engineering and Natural Resources)Universidad Politécnica de MadridMadridSpain
  3. 3.Forest Service of Junta Castilla y LeónValladolidSpain

Personalised recommendations