Advertisement

European Journal of Forest Research

, Volume 136, Issue 5–6, pp 923–938 | Cite as

Predicting natural forest regeneration: a statistical model based on inventory data

  • Horst Kolo
  • Donna Ankerst
  • Thomas Knoke
Original Paper

Abstract

Regenerating forest stands through natural seedlings is a commonly accepted silvicultural strategy in Germany. To plan for and increase natural regeneration within a given stand, foresters must be able to estimate whether the stand in its current state can produce sufficient saplings to replace the overstory. In this paper, we present two approaches to building a model that can estimate the probability of natural regeneration occurring, based on variables that are typically readily available from forest inventories. To estimate model parameters we used the large database of the third National Forest Inventory, which covers forest stands and sites across the whole of Germany, as well as weather and soil data. We examined how these variables impact the emergence of natural regeneration, ultimately fitting a model that can predict the occurrence of natural regeneration in 72% of cases. The influence of the variables on the predicted occurrence of natural regeneration was mixed, with most stand variables contributing only minor impact and most likely influencing natural regeneration via complex interactions. The exception was vertical structure (number of stand layers), which accounted for a large proportion of the goodness-of-fit of the model. An important finding was that forest ownership structure is a key variable for the prediction of the presence of regeneration. Data from this study support the assumption that some forest owners manage their stands in a way that fosters natural regeneration.

Keywords

Natural regeneration Federal Forest Inventory Logistic regression Ownership structure Number of stand layers 

Notes

Acknowledgements

Supported by the German Federal Agency for Nature Conservation (BfN) with resources of the Federal Programme for biological diversity (Bundesprogramm Biologische Vielfalt) from the German Federal Ministry for Environment, Nature Conservation, Construction and Nuclear Safety (BMUB). We also thank Elizabeth Gosling and Chelsea Jones for language editing.

Supplementary material

10342_2017_1080_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)
10342_2017_1080_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)
10342_2017_1080_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 13 kb)
10342_2017_1080_MOESM4_ESM.docx (14 kb)
Supplementary material 4 (DOCX 13 kb)
10342_2017_1080_MOESM5_ESM.docx (13 kb)
Supplementary material 5 (DOCX 13 kb)
10342_2017_1080_MOESM6_ESM.docx (15 kb)
Supplementary material 6 (DOCX 14 kb)
10342_2017_1080_MOESM7_ESM.docx (15 kb)
Supplementary material 7 (DOCX 14 kb)
10342_2017_1080_MOESM8_ESM.docx (15 kb)
Supplementary material 8 (DOCX 14 kb)
10342_2017_1080_MOESM9_ESM.docx (15 kb)
Supplementary material 9 (DOCX 14 kb)
10342_2017_1080_MOESM10_ESM.docx (15 kb)
Supplementary material 10 (DOCX 14 kb)

References

  1. Backhaus K, Erichson B, Weiber R, Plinke W (2016) Discriminant analysis. In: Backhaus K, Erichson B, Plinke W, Weiber R (eds) Multivariate analysemethoden. Springer, Berlin, pp 215–282. doi: 10.1007/978-3-662-46076-4_5 (in German) CrossRefGoogle Scholar
  2. Bauer W, Braun W, Braunger M, Dörr T, Ebinger T, Göckel C, Karopka, M, Mann P, Morell M, Schmid R, Thumm H, Wieners M (2009) Seedlings and planting. Ministry for Nutrition and Countryside (in German)Google Scholar
  3. Bavarian Ministry for Nutrition, Agriculture and Forestry (2010) Planting and nursing forest stands (in German)Google Scholar
  4. Bavarian State Forests (2008) Silvicultural principles of the Bavarian State Forest (in German)Google Scholar
  5. Bitterlich W (1984) The relascope idea. Relative measurements in forestry. Commonwealth Agricultural Bureaux, Farnham Royal, SloughGoogle Scholar
  6. Burschel P, Huss J (2003) Compendium of silviculture. A guideline for academic studies and practice, 3rd edn. Ulmer, Stuttgart (in German) Google Scholar
  7. Cramér H (1999) Mathematical methods of statistics. Nineteenth print. Princeton University Press, Princeton (Princeton landmarks in mathematics and physics)Google Scholar
  8. Dodson EK, Root HT (2013) Conifer regeneration following stand-replacing wildfire varies along an elevation gradient in a ponderosa pine forest, Oregon, USA. For Ecol Manag 302:163–170. doi: 10.1016/j.foreco.2013.03.050 CrossRefGoogle Scholar
  9. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35(5–6):352–359. doi: 10.1016/S1532-0464(03)00034-0 CrossRefPubMedGoogle Scholar
  10. Esri Inc (2014) ArcGIS. Esri Inc., RedlandsGoogle Scholar
  11. Faltl W (2011) Principles of hunting in the Bavarian State Forest. Bayerische Staatsforsten AöR, Regensburg (in German) Google Scholar
  12. Ferguson DE (1996) Modeling natural regeneration establishment in the northern Rocky Mountains of the U.S.A.. In: Conference on modelling regeneration success and early growth of forest stands, pp 30–40Google Scholar
  13. Ferguson DE, Stage AR, Boyd RJ (1986) Predicting regeneration in the grand fir-cedar-hemlock ecosystem of the northern Rocky Mountains, vol 26. Forest science. Monograph. Society of American Foresters, WashingtonGoogle Scholar
  14. Fortin Mathieu, DeBlois J (2007) Modeling tree recruitment with zero-inflated models: the example of hardwood stands in Southern Quebec, Canada. For Sci 53(4):529–539Google Scholar
  15. Gaston AJ, Sharpe ST, Stockton S, Golumbia TE, Martin JL (2008) Reduction in deer numbers on Reef Island and SGang Gwaay: progress, results, and vegetation changes. In: Gaston AJ, Golumbia TE, Martin J-L, Sharpe ST (eds) Lessons from the Islands: proceedings from the Research Group on Introduced Species 2002 symposiumGoogle Scholar
  16. German Weather Service (2016) Climate data. ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/monthly/. 11 Oct 2016Google Scholar
  17. Hallikainen V, Hyppönen M, Hyvönen J, Niemelä J (2007) Establishment and height development of harvested and naturally regenerated Scots pine near the timberline in North-East Finnish Lapland. Silva Fenn. doi: 10.14214/sf.308 Google Scholar
  18. Harmer R (2001) The effect of plant competition and simulated summer browsing by deer on tree regeneration. J Appl Ecol 38(5):1094–1103. doi: 10.1046/j.1365-2664.2001.00664.x CrossRefGoogle Scholar
  19. Harrell F (2015) rms: regression modeling strategies. https://CRAN.R-project.org/package=rms/. 11 Oct 2016
  20. Hartwich R, Behrens J, Eckelmann W, Haase G, Richter A, Roeschmann G, Schmidt R (1998) Soil map of the Federal Republic of Germany 1:1000000(BÜK 1000). HannoverGoogle Scholar
  21. Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley series in probability and statisticsGoogle Scholar
  22. Hothorn T, Müller J (2010) Large-scale reduction of ungulate browsing by managed sport hunting. For Ecol Manag 260(9):1416–1423CrossRefGoogle Scholar
  23. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  24. Hyppönen M, Alenius V, Valkonen S (2005) Models for the establishment and height development of naturally regenerated Pinus sylvestris in Finnish Lapland. Scand J For Res 20(4):347–357. doi: 10.1080/02827580510036391 CrossRefGoogle Scholar
  25. Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Hole-filled seamless srtm data V3. version: International Centre for Tropical Agriculture (CIAT). Online verfügbar unter http://srtm.csi.cgiar.org
  26. Jonášová M, Vávrová E, Cudlín P (2010) Western Carpathian mountain spruce forest after a windthrow: natural regeneration in cleared and uncleared areas. For Ecol Manag 259(6):1127–1134. doi: 10.1016/j.foreco.2009.12.027 CrossRefGoogle Scholar
  27. Kleinbaum DG, Klein M (2010) Logistic regression: a self-learning text, vol Statistics for biology and health, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  28. Klopcic M, Boncina A (2012) Recruitment of tree species in mixed selection and irregular shelterwood forest stands. Ann For Sci 69(8):915–925. doi: 10.1007/s13595-012-0224-1 CrossRefGoogle Scholar
  29. Klopcic M, Poljanec A, Boncina A (2012) Modelling natural recruitment of European beech (Fagus sylvatica L.). For Ecol Manag 284:142–151. doi: 10.1016/j.foreco.2012.07.049 CrossRefGoogle Scholar
  30. Kuijper DP, Jędrzejewska B, Brzeziecki B, Churski M, Jędrzejewski W, Żybura H (2010) Fluctuating ungulate density shapes tree recruitment in natural stands of the Białowieża Primeval Forest, Poland. J Veg Sci 21(6):1082–1098. doi: 10.1111/j.1654-1103.2010.01217.x CrossRefGoogle Scholar
  31. Landesbetrieb Forst Baden-Württemberg (2014): Principles of statewide types of forest development. Landesbetrieb Forst Baden-Württemberg. http://www.forstbw.de/fileadmin/forstbw_infothek/forstbw_praxis/wet/ForstBW_Waldentwicklung_web.pdf (in Germany). 11 Oct 2016
  32. Larsen DR, Metzger MA, Johnson PS (1997) Oak regeneration and overstory density in the Missouri Ozarks. Can J For Res 27(6):869–875. doi: 10.1139/x97-010 CrossRefGoogle Scholar
  33. Le Chessie S, van Houwelingen JC (1991) A Goodness-of-Fit Test for Binary Regression Models, Based on Smoothing Methods. Biometrics 47(4):1267–1282. doi: 10.2307/2532385 CrossRefGoogle Scholar
  34. Lele SR, Keim JL, Solymos P (2015) ResourceSelection: resource selection (probability) functions for use-availability. https://CRAN.R-project.org/package=ResourceSelection/. 11 Oct 2016
  35. Lemeshow S, Hosmer DW (1982) A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 115(1):92–106CrossRefPubMedGoogle Scholar
  36. Lexerød NL (2005) Recruitment models for different tree species in Norway. Forest Ecol Manag 206(1–3):91–108. doi: 10.1016/j.foreco.2004.11.001 CrossRefGoogle Scholar
  37. Lexerød N, Eid T (2005) Recruitment models for Norway spruce, Scots pine, birch and other broadleaves in young growth forests in Norway. Silva Fenn. doi: 10.14214/sf.376 Google Scholar
  38. Liira J, Sepp T, Kohv K (2011) The ecology of tree regeneration in mature and old forests: combined knowledge for sustainable forest management. J For Res Jpn 16(3):184–193. doi: 10.1007/s10310-011-0257-6 CrossRefGoogle Scholar
  39. Lucas-Borja ME, Candel-Pérez D, Morote FGA, Onkelinx T, Tíscar PA, Balandier P (2016) Pinus nigra Arn ssp salzmannii seedling recruitment is affected by stand basal area, shrub cover and climate interactions. Ann For Sci 73(3):649–656. doi: 10.1007/s13595-016-0550-9 CrossRefGoogle Scholar
  40. Lynch TB, Nkouka J, Huebschmann MM, Guldin JM (2003) Maximum likelihood estimation for predicting the probability of obtaining variable shortleaf pine regeneration densities. For Sci 49(4):577–584Google Scholar
  41. Miina J, Saksa T (2013) Predicting establishment of tree seedlings in regeneration areas of Picea abies in Southern Finland. Balt For 19(2):187–200Google Scholar
  42. Nilsson U, Gemmel P, Johansson U, Karlsson M, Welander T (2002) Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. For Ecol Manag 161(1–3):133–145. doi: 10.1016/S0378-1127(01)00497-2 CrossRefGoogle Scholar
  43. Nyland RD (2007) Silviculture: concepts and applications, 2nd edn. Waveland Press, Long GroveGoogle Scholar
  44. Osman KT (2013) Soils: principles, properties and management. Springer, DordrechtCrossRefGoogle Scholar
  45. Polley H (2011) Survey instructions for the 3rd National Forest Inventory (2011–2012). Federal Ministry for Nutrition, Agriculture and Consumer Protection, BonnGoogle Scholar
  46. Polley H, Hennig P, Kroiher F, Marks A, Riedel T, Schmid U, Schwitzgebel F, Stauber T (2015) The forests in Germany: Selected results of the Third National Forest Inventory. BerlinGoogle Scholar
  47. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264. doi: 10.1016/j.foreco.2014.04.027 CrossRefGoogle Scholar
  48. Príncipe A, Nunes A, Pinho P, do Rosário L, Correia O, Branquinho C (2014) Modeling the long-term natural regeneration potential of woodlands in semiarid regions to guide restoration efforts. Eur J For Res 133(4):757–767. doi: 10.1007/s10342-014-0787-5 Google Scholar
  49. R Core Team (2016) R: A language and environment for statistical computing, Vienna, Austria. https://www.R-project.org/
  50. Rencher AC (2002) Methods of multivariate analysis, Wiley series in probability and mathematical statistics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  51. Schütt P (2008) Lexikon der Nadelbäume. Die große Enzyklopädie mit über 800 Farbfotos unter Mitwirkung von 30 Experten. Lizenzausg. für Nikol Verl.-Ges. Wiley, HamburgGoogle Scholar
  52. Schweiger J, Sterba H (1997) A model describing natural regeneration recruitment of Norway spruce (Picea abies (L.) Karst.) in Austria. For Ecol Manag 97(2):107–118. doi: 10.1016/S0378-1127(97)00092-3 CrossRefGoogle Scholar
  53. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):7881 CrossRefGoogle Scholar
  54. Staatsbetrieb Sachsenforst (2014) Hunting in SaxonyForst. Staatsbetrieb Sachsenforst, Pirna (in Germany)Google Scholar
  55. Stewart JD, Landhäusser SM, Stadt KJ, Lieffers VJ (2001) Predicting natural regeneration of white spruce in boreal mixedwood understories. For Chron 77(6):1006–1013. doi: 10.5558/tfc771006-6 CrossRefGoogle Scholar
  56. Tegelmark DO (1998) Site factors as multivariate predictors of the success of natural regeneration in Scots pine forests. Forest Ecol Manag 109(1–3):231–239. doi: 10.1016/S0378-1127(98)00255-2 CrossRefGoogle Scholar
  57. Thünen-Institut (2012) Third Federal Forest Inventory—Results database. ThünenInstitut. https://bwi.info/. 11 Oct 2016
  58. ThüringenForst (2015) Our forest with game: hunting ThüringenForst. ThüringenForst, Erfurt (in Germany)Google Scholar
  59. Tremblay JP, Huot J, Potvin F (2007) Density-related effects of deer browsing on the regeneration dynamics of boreal forests. J Appl Ecol 44(3):552–562CrossRefGoogle Scholar
  60. Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231. doi: 10.1016/S0895-4356(96)00002-9 CrossRefPubMedGoogle Scholar
  61. Vanclay JK (1992) Modelling regeneration and recruitment in a tropical rain forest. Can J For Res 22(9):1235–1248. doi: 10.1139/x92-165 CrossRefGoogle Scholar
  62. Youden WJ (1950) Index for rating diagnostic tests. Cancer 3(1):32–35. doi: 10.1002/1097-0142(1950)3:1<32:AID-CNCR2820030106>3.0.CO;2-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Forest ManagementTechnical University of MunichFreisingGermany
  2. 2.Chair of Mathematical Modeling of Biological SystemsTechnical University of MunichGarchingGermany

Personalised recommendations