European Journal of Forest Research

, Volume 136, Issue 5–6, pp 881–892 | Cite as

Soil N mineralization profiles of co-existing woody vegetation islands at the alpine tree line

Original Paper
  • 147 Downloads

Abstract

Tree lines form a transition ecotone from forest to tundra both at high elevation and high latitude and occur in a number of different forms. Nitrogen (N) deficiency is considered to be a factor involved in tree line formation, and also N dynamics are considered to differ between the trees and the ericaceous vegetation of the tundra. In the Austrian Alps at the tree line, N availability and N mineralization in soils of different vegetation types (Picea abies, Pinus mugo and Rhododendron ferrugineum) as well as total phenols were determined. Soil from under P. abies was taken from two different tree line forms, an island type and a diffuse type, as well as from P. abies growing at a lower elevation. N mineralization was measured in situ using a covered PVC tube incubation method and in a laboratory incubation under controlled conditions. Ion exchange resin capsules were installed at the interface of humus and mineral soil for estimating N in the soil solution. Net N mineralization showed a similar pattern for the vegetation types for both the in situ and laboratory incubation. The soil humus layer had the highest levels of N mineralization compared to the other soil layers. N mineralization rates were similar in P. abies and P. mugo at the tree line regardless of tree line form. Rates of N mineralization were lower under R. ferrugineum than the tree species, but this lower rate was not related to the occurrence of high levels of total phenols in the soil. Nitrogen deficiency was not evident in the island-type tree line, but was evident in the diffuse tree line type.

Keywords

Tree line Soil N mineralization In situ field incubation Soil N availability Resin capsule Woody vegetation islands 

Notes

Acknowledgements

We thank the China scholarship council for support of LW (201306600003), and a Marie Curie Grant GPF333996 LINKTOFUN to DG. This work was also supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program NPU I, Grant no. LO1415. We thank the Stift Heiligenkreuz for giving us access to the sites. We thank Frauke Neumann and Marcel Hirsch for technical support, and Christoph Rosinger for help taking the soil samples.

Supplementary material

10342_2017_1076_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1136 kb)

References

  1. Abbasi MK, Tahir MM, Sabir N, Khurshid M (2015) Impact of the addition of different plant residues on nitrogen mineralization-immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth 6:197. doi: 10.5194/se-6-197-2015 CrossRefGoogle Scholar
  2. Adamczyk B et al (2016) The contribution of ericoid plants to soil nitrogen chemistry and organic matter decomposition in boreal forest soil. Soil Biol Biochem 103:394–404. doi: 10.1016/j.soilbio.2016.09.016 CrossRefGoogle Scholar
  3. Adams M, Polglase P, Attiwill P, Weston C (1989) In situ studies of nitrogen mineralization and uptake in forest soils; some comments on methodology. Soil Biol Biochem 21:423–429. doi: 10.1016/0038-0717(89)90154-5 CrossRefGoogle Scholar
  4. Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Academic Press, Cambridge, pp 1–67. doi: 10.1016/S0065-2504(08)60016-1 CrossRefGoogle Scholar
  5. Andreetta A, Cecchini G, Bonifacio E, Comolli R, Vingiani S, Carnicelli S (2016) Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 264(Part A):195–204. doi: 10.1016/j.geoderma.2015.11.002 CrossRefGoogle Scholar
  6. Balestrini R, Arese C, Freppaz M, Buffagni A (2013) Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps). Hydrol Earth Syst Sci 17:989–1001. doi: 10.5194/hess-17-989-2013 CrossRefGoogle Scholar
  7. Bloomfield J, Vogt KA, Vogt DJ (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant Soil 150:233–245. doi: 10.1007/bf00013020 CrossRefGoogle Scholar
  8. Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711. doi: 10.2307/1939337 CrossRefGoogle Scholar
  9. Cornelissen J, Aerts R, Cerabolini B, Werger M, Van Der Heijden M (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129:611–619. doi: 10.1007/s004420100752 CrossRefPubMedGoogle Scholar
  10. Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F (2017) Soil warming opens the nitrogen cycle at the alpine treeline. Glob Chang Biol 23:421–434. doi: 10.1111/gcb.13365 CrossRefPubMedGoogle Scholar
  11. De Neve S, Pannier J, Hofman G (1994) Fractionation of vegetable crop residues in relation to in situ N mineralization. Eur J Agron 3:267–272. doi: 10.1016/S1161-0301(14)80154-8 CrossRefGoogle Scholar
  12. De Santo AV, Alfani A, Fioretto A (1982) Nitrogen mineralization in southern beech forests. Pedobiologia 23:348–357Google Scholar
  13. DeLuca T, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214. doi: 10.1007/s00442-002-1025-2 CrossRefPubMedGoogle Scholar
  14. Doche B, Franchini S, Pornon A, Lemperiere G (2005) Changes of humus features along with a successional gradient of Rhododendron ferrugineum (L.) populations (subalpine level, northwestern Alps, France). Arct Antarct Alp Res 37:454–464. doi: 10.1657/1523-0430(2005)037[0454:COHFAW]2.0.CO;2
  15. FAO (2006) Guidelines for soil description, 4th edn. FAO, RomeGoogle Scholar
  16. Frankenberger WT, Abdelmagid HM (1985) Kinetic parameters of nitrogen mineralization rates of leguminous crops incorporated into soil. Plant Soil 87:257–271. doi: 10.1007/BF02181865 CrossRefGoogle Scholar
  17. Gadgil RL, Gadgil P (1978) Influence of clearfelling on decomposition of Pinus radiata litter. NZJ For Sci 8:213–224Google Scholar
  18. Gallet C, Lebreton P (1995) Evolution of phenolic patterns in plants and associated litters and humus of a mountain forest ecosystem. Soil Biol Biochem 27:157–165. doi: 10.1016/0038-0717(94)00167-Y CrossRefGoogle Scholar
  19. Giese M, Gao YZ, Lin S, Brueck H (2011) Nitrogen availability in a grazed semi-arid grassland is dominated by seasonal rainfall. Plant Soil 340:157–167. doi: 10.1007/s11104-010-0509-9 CrossRefGoogle Scholar
  20. Gonçalves JLM, Carlyle JC (1994) Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil. Soil Biol Biochem 26:1557–1564. doi: 10.1016/0038-0717(94)90098-1 CrossRefGoogle Scholar
  21. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544. doi: 10.1093/aob/mcf222 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Groten K, Bruelheide H (1997) Differences in soil conditions between healthlands and grasslands on Zechstein gypsum soils. Flora 192:347–359. doi: 10.1016/S0367-2530(17)30804-6 CrossRefGoogle Scholar
  23. Hanselman TA, Graetz DA, Obreza TA (2004) A comparison of in situ methods for measuring net nitrogen mineralization rates of organic soil amendments. J Environ Qual 33:1098–1105. doi: 10.2134/jeq2004.1098 CrossRefPubMedGoogle Scholar
  24. Harsch MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596. doi: 10.1111/j.1466-8238.2010.00622.x CrossRefGoogle Scholar
  25. Hart SC, Firestone MK (1989) Evaluation of three in situ soil nitrogen availability assays. Can J For Res 19:185–191. doi: 10.1139/x89-026 CrossRefGoogle Scholar
  26. Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243. doi: 10.1016/S0169-5347(00)01861-9 CrossRefPubMedGoogle Scholar
  27. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi: 10.1111/j.1466-822X.2005.00168.x CrossRefGoogle Scholar
  28. Iritani WM, Arnold C (1960) Nitrogen release of vegetable crop residues during incubation as related to their chemical composition. Soil Sci 89:74–82CrossRefGoogle Scholar
  29. Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992) Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J 56:1799–1806. doi: 10.2136/sssaj1992.03615995005600060025x CrossRefGoogle Scholar
  30. Jobbagy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. doi: 10.1046/j.1365-2699.2000.00162.x CrossRefGoogle Scholar
  31. Johnson DW, Verburg P, Arnone J (2005) Soil extraction, ion exchange resin, and ion exchange membrane measures of soil mineral nitrogen during incubation of a tallgrass prairie soil. Soil Sci Soc Am J 69:260–265. doi: 10.2136/sssaj2005.0260 CrossRefGoogle Scholar
  32. Khanna PK, Raison RJ (2013) In situ core methods for estimating soil mineral-N fluxes: re-evaluation based on 25 years of application and experience. Soil Biol Biochem 64:203–210. doi: 10.1016/j.soilbio.2012.09.004 CrossRefGoogle Scholar
  33. Kladivko EJ, Keeney DR (1987) Soil nitrogen mineralization as affected by water and temperature interactions. Biol Fertil Soils 5:248–252. doi: 10.1007/BF00256909 CrossRefGoogle Scholar
  34. Knoepp JD, Swank WT (1995) Comparison of available soil nitrogen assays in control and burned forested sites. Soil Sci Soc Am J 59:1750–1754. doi: 10.2136/sssaj1995.03615995005900060035x CrossRefGoogle Scholar
  35. Knoepp JD, Swank WT (2002) Using soil temperature and moisture to predict forest soil nitrogen mineralization. Biol Fertil Soils 36:177–182. doi: 10.1007/s00374-002-0536-7 CrossRefGoogle Scholar
  36. Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. doi: 10.1007/s004420050540 CrossRefPubMedGoogle Scholar
  37. Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, BerlinCrossRefGoogle Scholar
  38. Loomis PF, Ruess RW, SvEINBJöRNSSON B, Kielland K (2006) Nitrogen cycling at treeline: latitudinal and elevational patterns across a boreal landscape. Ecoscience 13:544–556. doi: 10.2980/1195-6860(2006)13[544:NCATLA]2.0.CO;2
  39. MacKenzie MD, DeLuca TH, Sala A (2006) Fire exclusion and nitrogen mineralization in low elevation forests of western Montana. Soil Biol Biochem 38:952–961. doi: 10.1016/j.soilbio.2005.08.008 CrossRefGoogle Scholar
  40. MacKown C, Brooks P, Smith M (1987) Division S-3-soil microbiology and biochemistry. Soil Sci Soc Am J (United States) 51:1492–1501CrossRefGoogle Scholar
  41. Maithani K, Arunachalam A, Tripathi RS, Pandey HN (1998) Influence of leaf litter quality on N mineralization in soils of subtropical humid forest regrowths. Biol Fertil Soils 27:44–50. doi: 10.1007/s003740050398 CrossRefGoogle Scholar
  42. Marrs RH, Proctor J, Heaney A, Mountford MD (1988) Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J Ecol 76:466–482. doi: 10.2307/2260606 CrossRefGoogle Scholar
  43. Miles J (1985) The pedogenic effects of different species and vegetation types and the implications of succession. Eur J Soil Sci 36:571–584. doi: 10.1111/j.1365-2389.1985.tb00359.x CrossRefGoogle Scholar
  44. Nadelhoffer KJ, Aber JD, Melillo JM (1984) Seasonal patterns of ammonium and nitrate uptake in nine temperate forest ecosystems. Plant Soil 80:321–335. doi: 10.1007/BF02140039 CrossRefGoogle Scholar
  45. Nadelhoffer K, Giblin A, Shaver G, Laundre J (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72:242–253. doi: 10.2307/1938918 CrossRefGoogle Scholar
  46. Persson T, Wirén A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 168:55–65. doi: 10.1007/BF00029313 CrossRefGoogle Scholar
  47. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. doi: 10.1139/b04-123 CrossRefGoogle Scholar
  48. Rennenberg H, Dannenmann M (2015) Nitrogen nutrition of trees in temperate forests—the significance of nitrogen availability in the pedosphere and atmosphere. Forests. doi: 10.3390/f6082820 Google Scholar
  49. Rice EL, Pancholy SK (1973) Inhibition of nitrification by climax ecosystems. II. Additional evidence and possible role of tannins. Am J Bot 60:691–702. doi: 10.2307/2441448 CrossRefGoogle Scholar
  50. Richter D, Markewitz D, Wells C, Allen H, April R, Heine P, Urrego B (1994) Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem. Ecology 75:1463–1473. doi: 10.2307/1937469 CrossRefGoogle Scholar
  51. Schulze E-D, Chapin F III, Gebauer G (1994) Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia 100:406–412. doi: 10.1007/BF00317862 CrossRefPubMedGoogle Scholar
  52. Scott NA, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159. doi: 10.1007/s004420050219 CrossRefPubMedGoogle Scholar
  53. Setälä HM, Francini G, Allen JA, Hui N, Jumpponen A, Kotze DJ (2016) Vegetation type and age drive changes in soil properties, nitrogen, and carbon sequestration in urban parks under cold climate. Front Ecol Evol. doi: 10.3389/fevo.2016.00093 Google Scholar
  54. Sierra J (1996) Nitrogen mineralisation and its error of estimation under field conditions related to the light-fraction soil organic matter. Soil Res 34:755–767. doi: 10.1071/SR9960755 CrossRefGoogle Scholar
  55. Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158Google Scholar
  56. Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191. doi: 10.1146/annurev.es.22.110191.001141 CrossRefGoogle Scholar
  57. Sullivan PF, Ellison SB, McNown RW, Brownlee AH, Sveinbjörnsson B (2015) Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska. Ecology 96:716–727. doi: 10.1890/14-0626.1 CrossRefPubMedGoogle Scholar
  58. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems, vol 5. University of California Press, CaliforniaGoogle Scholar
  59. Thébault A et al (2014) Nitrogen limitation and microbial diversity at the treeline. Oikos 123:729–740. doi: 10.1111/j.1600-0706.2013.00860.x CrossRefGoogle Scholar
  60. Vinton MA, Burke IC (1995) Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology 76:1116–1133. doi: 10.2307/1940920 CrossRefGoogle Scholar
  61. Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572. doi: 10.1086/283931 CrossRefGoogle Scholar
  62. Wang L, Otgonsuren B, Godbold DL (2017) Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line. Plant Soil 411:467–481. doi: 10.1007/s11104-016-3047-2 CrossRefPubMedGoogle Scholar
  63. Wardle P (1993) Causes of alpine timberline: a review of the hypotheses. In: Forest development in cold climates. Plenum, New York, pp 89–103Google Scholar
  64. Wardle DA, Zackrisson O, Hörnberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299. doi: 10.1126/science.277.5330.1296 CrossRefGoogle Scholar
  65. Wurzburger N, Hendrick RL (2007) Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests. Pedobiologia 50:563–576. doi: 10.1016/j.pedobi.2006.10.001 CrossRefGoogle Scholar
  66. Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584. doi: 10.2136/sssaj1999.03615995006300030021x CrossRefGoogle Scholar
  67. Zhao W, Zhang J, Müller C, Cai Z (2016) Mechanisms behind the stimulation of nitrification by N input in subtropical acid forest soil. J Soils Sediments. doi: 10.1007/s11368-016-1461-y Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Forest EcologyUniversität für Bodenkultur (BOKU)ViennaAustria
  2. 2.CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduPeople’s Republic of China
  3. 3.Global Change Research Institute, Department of Landscape Carbon DepositionAcademy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic

Personalised recommendations