Recovery of functional groups of fungi and wood-decaying species of conservation concern after variable intensity forest utilization

  • Olli-Pekka Tikkanen
  • Olga Predtechenskaya
  • Anna Ruokolainen
  • Raimo Heikkilä
Original Paper


Information concerning the speed of recovery in forest ecosystems is critical when seeking to determine the length of sustainable logging rotations, or for the evaluation of different forest restoration options for species conservation programs. Different functional groups may have specific roles within the ecosystem processes and costly conservation efforts should be targeted at species of conservation concern. Therefore, an analysis of how functional or ecological groups recover following disturbance could provide more precise information than the recovery of taxonomic groups alone. We studied the recovery rate of taxonomic and functional groups of fungi in a boreal landscape where forest use had ceased more than 60 years ago. The forests in our study areas had a variable utilization history. The stands located near abandoned settlements were former scrubland. The adjacent stands formed a selectively cut zone and were followed by stands deeper in the forest matrix that were largely in pristine condition. We recorded boletoid, agaricoid and aphyllophoroid fungi species numbers in 0.25 ha sample plots at 500 m intervals along seven 2–2.5 km long transects. The transects started at the edge of the forest next to the abandoned settlements. Distance (intensity of previous forest utilization) did not affect the species richness of the taxonomic or functional groups of fungi, although the number of aphyllophoroid species of conservation concern was 50% lower in the forests that had been utilized in the past than in the surrounding pristine forests. Moreover, in stands close to the villages, the composition of aphyllophoroid species (β diversity) differed from that of more distant and less utilized stands. Our results would suggest that the majority of ecosystem properties provided by higher fungi groups seem to recover within one century. However, the slow pace of accumulation of dead wood in an advanced state of decay probably slows the recovery of aphyllophoroid species of conservation concern.


Agaricoid fungi Aphyllophoroid fungi Boletoid fungi Boreal forests Ecosystem functioning Primeval forests Species richness 

Supplementary material

10342_2017_1073_MOESM1_ESM.pdf (288 kb)
Supplementary material 1 (PDF 287 kb)
10342_2017_1073_MOESM2_ESM.xls (78 kb)
Supplementary material 2 (XLS 78 kb)
10342_2017_1073_MOESM3_ESM.xls (59 kb)
Supplementary material 3 (XLS 59 kb)


  1. Abrego N, Salcedo I (2013) Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: is it a question of quantity or quality? For Ecol Manag 291:377–385CrossRefGoogle Scholar
  2. Ahti T, Hämet-Ahti L, Jalas J (1968) Vegetation zones and their sections in north-western Europe. Ann Bot Fenn 5:169–211Google Scholar
  3. Bässler C, Ernst R, Cadotte M, Heibl C, Müller J (2014) Near-to-nature logging influences fungal community assembly processes in a temperate forest. J Appl Ecol 51:939–948CrossRefGoogle Scholar
  4. Berglund H, Jonsson BG (2005) Verifying an extinction debt among lichens and fungi in northern Swedish boreal forests. Conserv Biol 19:338–348CrossRefGoogle Scholar
  5. Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73(S1):1377–1383CrossRefGoogle Scholar
  6. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  7. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618CrossRefPubMedGoogle Scholar
  8. Dynesius M (2015) Slow recovery of bryophyte assemblages in middle-aged boreal forests regrown after clear-cutting. Biol Conserv 191:101–109CrossRefGoogle Scholar
  9. Edman M, Gustafsson M, Stenlid J, Ericson L (2004a) Abundance and viability of fungal spores along a forestry gradient–responses to habitat loss and isolation? Oikos 104:35–42CrossRefGoogle Scholar
  10. Edman M, Gustafsson M, Stenlid J, Jonsson BG, Ericson L (2004b) Spore deposition of wood-decaying fungi: importance of lansdscape composition. Ecography 27:103–111CrossRefGoogle Scholar
  11. Edman M, Möller R, Ericson L (2006) Effects of enhanced tree growth rate on the decay capacities of three saprotrophic wood-fungi. For Ecol Manag 232:12–18CrossRefGoogle Scholar
  12. Gaston KJ, Kunin WE (1997) Rare-common differences: an overview. In: Kunin WE, Gaston KJ (eds) The biology of rarity, causes and consequences of rare-common differences, population and community biology series, vol 17. Chapman and Hall, London, pp 12–29Google Scholar
  13. Gnatiuk EP, Kravchenko AV, Kryshen AM (2003) Understanding Karelias floristic zones: current state and prospects. In: Gromtsev AN, Kitaev SP, Krutov VI, Kuznetsov OL, Lindholm T, Yakolev EB (eds) Biotic diversity of Karelia: conditions of formation, communities and species. Karelian Research Centre of RAS, Petrozavodsk, pp 83–88Google Scholar
  14. Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614CrossRefPubMedGoogle Scholar
  15. Gromtsev AN (2003) Landscape models of the primeval forests. In: Gromtsev AN, Kitaev SP, Krutov VI, Kuznetsov OL, Lindholm T, Yakolev EB (eds) Biotic diversity of Karelia: conditions of formation, communities and species. Karelian Research Centre of RAS, Petrozavodsk, pp 47–49Google Scholar
  16. Halme P, Kotiaho JS (2012) The importance of timing and number of surveys in fungal biodiversity research. Biod Conserv 21:205–219CrossRefGoogle Scholar
  17. Hansen L, Knudsen H (eds) (1992) Nordic Macromycetes, vol 2. Nordsvamp, Copenhagen, Polyporales, p 474Google Scholar
  18. Hanski I (2000) Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Ann Zool Fenn 37:271–280Google Scholar
  19. Hottola J, Ovaskainen O, Hanski I (2009) A unified measure of the number, volume and diversity of dead trees and the response of fungal communities. J Ecol 97:1320–1328CrossRefGoogle Scholar
  20. Ivanter E, Kuznetsov O (eds.) (2007) Кpacнaя книгa Кapлии Red Data Book of Republic of Karelia, in Russian). Petrozavodsk, p 364Google Scholar
  21. Jakovlev J (1994) Palearctic Diptera Associated with Fungi and Myxomycetes. Petrozavodzk: Karelian Research Centre, Russian Academy of Sciences [in Russian, with English summary]Google Scholar
  22. Jakovlev J (2012) Fungal hosts of mycetophilids (Diptera: sciaroidea excluding Sciaridae): a review. Mycology 3:11–23Google Scholar
  23. Junninen K, Komonen A (2011) Conservation ecology of boreal polypores: a review. Biol Conserv 144:11–20CrossRefGoogle Scholar
  24. Junninen K, Similä M, Kouki J, Kotiranta H (2006) Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography 29:75–83CrossRefGoogle Scholar
  25. Knudsen HJ, Vesterholt JH (eds) (2012) Funga Nordica: Agaricoid, boletoid, clavarioid, cyphelloid and gasteroid genera, 2nd edn. Nordsvamp, Copenhagen, p 1083Google Scholar
  26. Komonen A, Penttilä R, Lindgren M, Hanski I (2000) Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 90:119–126CrossRefGoogle Scholar
  27. Kotiranta H, Niemelä T (1993) Threatened polypores in Finland (in Finnish with English summary). Vesi ja ympäristöhallinnon julkaisuja Sarja B/17Google Scholar
  28. Kotiranta H, Saarenoksa R, Kytövuori I (2009) Aphyllophoroid fungi of Finland: a check-list with ecology, distribution, and threat categories. Norrlinia 19:1–223Google Scholar
  29. Kotiranta H, Junninen K, Saarenoksa R, Kinnunen J, Kytövuori I (2010) Aphyllophorales & Heterobasidiomycetes. In: Rassi P, Hyvärinen E, Juslén A, Mannerkoski I (eds) The 2010 Red List of Finnish Species. Ympäristöministeriö & Suomen ympäristökeskus, Helsinki, pp 249–263Google Scholar
  30. Kranabetter JM (1999) The effect of refuge trees on a paper birch ectomycorrhiza community. Can J Bot 77:1523–1528CrossRefGoogle Scholar
  31. Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2005) Ectomycorrhizal mushroom distribution by stand age in western hemlock—lodgepole pine forests of northwestern British Columbia. Can J For Res 35:1527–1539CrossRefGoogle Scholar
  32. Krivosheina NP (2008) Macromycete fruit bodies as a habitat for dipterans (Insecta, Diptera). Entomological Review 88:778–792CrossRefGoogle Scholar
  33. Krutov VI, Ruokolainen AV (2010) Aфиллoфopoидныe (дepeвopaзpyшaющиe) гpибы гocyдapcтвeннoгo пpиpoднoгo зaпoвeдникa « Кocтoмyкшcкий » и eгo oкpecтнocтeй. Пeтpoзaвoдcк: КapHЦ PAH, 2010. 32 c. (24 c. + 8 cтp. цв.вклeйкa)Google Scholar
  34. Lilja S, Kuuluvainen T (2005) Structure of old Pinus sylvestris dominated forest stands along a geographic and human impact gradient in mid-boreal Fennoscandia. Silva Fenn 39:407–428CrossRefGoogle Scholar
  35. Magurran A (2004) Measuring biological diversity. Blackwell Science, p 256Google Scholar
  36. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  37. Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen OP (2014) Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag 134:80–89CrossRefGoogle Scholar
  38. Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916CrossRefGoogle Scholar
  39. Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101:701–712CrossRefGoogle Scholar
  40. Norros V, Penttilä R, Suominen M, Ovaskainen O (2012) Dispersal may limit the occurrence of specialist wood decay fungi already at small spatial scales. Oikos 121:961–974CrossRefGoogle Scholar
  41. Penttilä R, Siitonen J, Kuusinen M (2004) Polypore diversity in managed and old-growth boreal Picea abies forests in southern Finland. Biol Cons 117:271–283CrossRefGoogle Scholar
  42. Penttilä R, Lindgren M, Miettinen O, Rita H, Hanski I (2006) Consequences of forest fragmentation for polyporous fungi at two spatial scales. Oikos 114:225–240CrossRefGoogle Scholar
  43. Perevedentseva LG (2008) Кoнcпeкт aгapикoидныx бaзидиoмицeтoв Пepмcкoгo кpaя. Пepмь (Conspectus of Agaricoid basidiomycetes of Perm Region, in Russian) Perm State Pedagogical University, Perm, p 86Google Scholar
  44. Predtechenskaya OO (2015) Aгapикoидныe мaкpoмицeты зaпoвeдникa “Кocтoмyкшcкий” (Agaricoid macromycetes of the Kostomuksha Nature Reserve, in Russian with English summary). Proceedings of the Kostomuksha Nature Reserve 1:20–24Google Scholar
  45. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263CrossRefGoogle Scholar
  46. Renvall P (1995) Community structure and dynamics of wood-rotting fungi on decomposing conifer trunks in northern Finland. Karstenia 35:1–51Google Scholar
  47. Runnel K, Tamm H, Lõhmus A (2015) Surveying wood-inhabiting fungi: most molecularly detected polypore species form fruit-bodies within short distances. Fungal Ecol 18:93–99CrossRefGoogle Scholar
  48. Ruokolainen AV (2015) Aфиллoфopoидныe гpибы ГПЗ « Кocтoмyкшcкий » (Aphyllophoroid fungi of the Kostomuksha Nature Reserve and its surroundings, in Russian with English summary). In: Proceedings of the Kostomuksha nature reserve, vol 1, pp 25–32Google Scholar
  49. Salo P, Niemelä T, Nummela-Salo U, Ohenoja E, Kaipiainen H (2005) Helttasienten ja tattien levinneisyys (in Finnish). In Salo P, Niemelä T, Nummela-Salo U, Ohenoja E (eds) Suomen helttasienten ja tattien ekologia, levinneisyys ja uhanalaisuus. Suomen ympäristö 769:87-94Google Scholar
  50. Schigel DS (2012) Fungivory and host associations of Coleoptera: a bibliography and review of research approaches. Mycology 3:258–272Google Scholar
  51. Schmalholz M, Hylander K (2009) Succession of bryophyte assemblages following clearcut logging in boreal spruce-dominated forests in south-central Sweden—does retrogressive succession occur? Can J For Res 39:1871–1880CrossRefGoogle Scholar
  52. Shubin VI (1988) Mикopизныe гpибы Ceвepo-зaпaдa Eвpoпeйcкoй чacти CCCP (Mycorrhizal fungi in the North-West of European part of the USSR, in Russian). Petrozavodsk, 212 pGoogle Scholar
  53. Shubin VI, Krutov VI (1979) Гpибы Кapeлии и Mypмaнcкoй oблacти (Fungi in Karelia and Murmansk region, in Russian). Nauka, Leningrad, p 107Google Scholar
  54. Snäll T, Pennanen J, Kivisto L, Hanski I (2005) Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109:209–222CrossRefGoogle Scholar
  55. Spake R, Ezard TH, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29(6):1695–1703. doi:10.1111/cobi.12548 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spake R, van der Linde S, Newton AC, Suz LM, Bidartondo MI, Doncaster CP (2016) Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests. Biol Cons 194:71–79CrossRefGoogle Scholar
  57. Stokland JN, Larsson KH (2011) Legacies from natural forest dynamics: different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For Ecol Manag 261:1707–1721CrossRefGoogle Scholar
  58. Straatsma G, Krisai-Greilhuber I (2003) Assemblage structure, species richness, abundance, and distribution of fungal fruit bodies in a seven year plot-based survey near Vienna. Mycol Res 107:632–640CrossRefPubMedGoogle Scholar
  59. Štursová M, Šnajdr J, Cajthaml T, Bárta J, Šantrůčková H, Baldrian P (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J 8:1920–1931CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tikkanen OP, Chernyakova I (2014) Past human population history affects current forest landscape structure of Vodlozero National Park, Northwest Russia. Silva Fenn 48Google Scholar
  61. Tikkanen OP, Chernyakova I, Heikkilä R (2014a) Vanished Villages—imprint of traditional agriculture in forest landscape of Western White Sea Karelia, Russia. Trans Karelian Res Centre Rus Acad Sci 6:148–156Google Scholar
  62. Tikkanen OP, Martikainen P, Hyvärinen E, Junninen K, Kouki J (2006) Red-listed boreal forest species of Finland: associations with forest structure, tree species and decaying wood. Ann Zool Fenn 43:373–383Google Scholar
  63. Tikkanen OP, Ruokolainen A, Heikkilä R (2014b) Recovery of boreal forest structures near abandoned villages in Western White Sea Karelia, Russia. Scand J For Res 29:152–161CrossRefGoogle Scholar
  64. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  65. Urbonas V, Kalamees K, Lukin V (1986) Conspectus Florum Agarocalium Fungorum (Agaricales s. l.) Lithuania, Latviae et Estiniae. Vilnius: MokslasGoogle Scholar
  66. Venugopal P, Julkunen-Tiitto R, Junninen K, Kouki J (2015) Phenolic compounds in Scots pine heartwood: are kelo trees a unique woody substrate? Can J For Res 46:225–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Forest SciencesUniversity of Eastern FinlandJoensuuFinland
  2. 2.Laboratory for Landscape Ecology and Forest ProtectionForest Research Institute, Karelian Research Centre of Russian Academy of SciencePetrozavodskRussia
  3. 3.Joensuu Office of Finnish Environment InstituteJoensuuFinland

Personalised recommendations