Advertisement

European Journal of Forest Research

, Volume 136, Issue 4, pp 711–725 | Cite as

Timber mobilization and habitat tree retention in low-elevation mixed forests in Switzerland: an inventory-based scenario analysis of opportunities and constraints

  • Christian Temperli
  • Golo Stadelmann
  • Esther Thürig
  • Peter Brang
Original Paper

Abstract

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

Keywords

Central Europe Empirical forest model MASSIMO Energy wood Forest inventory Habitat tree Timber mobilization 

Notes

Acknowledgements

We thank Alain Morier (head), Dr. Peter Ammann and Fabian Dietiker from the Division of Forest in the Department of Construction, Traffic and Environment of the Canton of Aargau for their guidance during the development of management scenarios and critical assessments of simulation results, Edgar Kaufmann for sharing his thoughts on the implementation of tree regeneration in MASSIMO and Fritz Frutig and Dr. Renato Lemm for helpful comments on harvesting cost calculations with HeProMo. This research was funded by the Swiss National Science Foundation’s 66th National Research Program (Grant No. 4066-40_136711).

Supplementary material

10342_2017_1067_MOESM1_ESM.docx (833 kb)
Supplementary material 1 (DOCX 832 kb)

References

  1. Abegg M, Brändli U-B, Cioldi F et al (2014) Swiss national forest inventory—result table no. 131837: volume. Swiss Federal Research Institute WSL, BirmensdorfGoogle Scholar
  2. Alrahahleh L, Ikonen V-P, Kilpeläinen A et al (2017) Effects of forest conservation and management on volume growth, harvested amount of timber, carbon stock, and amount of deadwood in Finnish boreal forests under changing climate. Can J For Res. doi: 10.1139/cjfr-2016-0153 Google Scholar
  3. Ammann P (2013) Erfolg der Jungwaldpflege im Schweizer Mittelland? Analyse und Folgerungen (Essay). Schweiz Z Forstwes 164:262–270. doi: 10.3188/szf.2013.0262 CrossRefGoogle Scholar
  4. Assmann E (1961) Waldertragskunde: organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft, MünchenGoogle Scholar
  5. Barreiro S, Schelhaas M-J, Kändler G et al (2016) Overview of methods and tools for evaluating future woody biomass availability in European countries. Ann For Sci. doi: 10.1007/s13595-016-0564-3 Google Scholar
  6. Blattert C, Lemm R, Thees O et al (2017) Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79:391–409. doi: 10.1016/j.ecolind.2017.04.025 CrossRefGoogle Scholar
  7. Boden S, Kahle H-P, von Wilpert K, Spiecker H (2014) Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. For Ecol Manag 315:12–21. doi: 10.1016/j.foreco.2013.12.015 CrossRefGoogle Scholar
  8. Brändli U-B (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL; Bundesamt für Umwelt, BAFU, Birmensdorf, BernGoogle Scholar
  9. Brang P, Spathelf P, Larsen JB et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503. doi: 10.1093/forestry/cpu018 CrossRefGoogle Scholar
  10. Bütler R, Lachat T, Larrieu L, Paillet Y (2013) Habitat trees: key elements for forest biodiversity. In: Integrating approaches as an opportunity for the conservation of forest biodiversity. European Forest Institute, pp 84–92Google Scholar
  11. Camin P, Cioldi F, Röösli B (2015) Growing stock. For. Rep. 2015 Cond. Use Swiss For. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, pp 32–33Google Scholar
  12. Chauvat M, Titsch D, Zaytsev AS, Wolters V (2011) Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For Ecol Manag 262:317–324. doi: 10.1016/j.foreco.2011.03.037 CrossRefGoogle Scholar
  13. Departement Bau, Verkehr und Umwelt (2010) Waldinventar Aargau. Ergebnisse der Stichprobenaufnahmen. Departement Bau, Verkehr und Umwelt, Abteilung Wald, AarauGoogle Scholar
  14. Dodoo A, Gustavsson L, Sathre R (2012) Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building. Appl Energy 92:462–472. doi: 10.1016/j.apenergy.2011.11.017 CrossRefGoogle Scholar
  15. Dolos K, Mette T, Wellstein C (2016) Silvicultural climatic turning point for European beech and sessile oak in Western Europe derived from national forest inventories. For Ecol Manag 373:128–137. doi: 10.1016/j.foreco.2016.04.018 CrossRefGoogle Scholar
  16. Federal Office for the Environment (2013) Forest Policy 2020. Visions, objectives and measures for the sustainable management of forests in Switzerland. Federal Office for the Environment FOEN, BernGoogle Scholar
  17. Ferranti F (2014) Energy wood: a challenge for European forests. Potentials, environmental implications, policy integration and related conflicts. EFI technical report 95, European Forest InstituteGoogle Scholar
  18. Frutig F, Holm S, Lemm R et al (2015) Kalkulation von Holzerntearbeiten: Das Produktivitätsmodell HeProMo. www.waldwissen.net
  19. Fürstenau C, Badeck FW, Lasch P et al (2006) Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J For Res 126:225–239. doi: 10.1007/s10342-006-0114-x CrossRefGoogle Scholar
  20. Gärtner S, Reif A (2005) The response of ground vegetation to structural change during forest conversion in the southern Black Forest. Eur J For Res 124:221–231. doi: 10.1007/s10342-005-0065-7 CrossRefGoogle Scholar
  21. Griess VC, Acevedo R, Härtl F et al (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296. doi: 10.1016/j.foreco.2011.11.035 CrossRefGoogle Scholar
  22. Hanewinkel M (2001) Economic aspects of the transformation from even-aged pure stands of Norway spruce to uneven-aged mixed stands of Norway spruce and beech. For Ecol Manag 151:181–193. doi: 10.1016/S0378-1127(00)00707-6 CrossRefGoogle Scholar
  23. Hanewinkel M, Cullmann DA, Schelhaas M-J et al (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change. doi: 10.1038/nclimate1687 Google Scholar
  24. Hofer P, Altwegg J, Hässig J et al (2011) Holznutzungspotentiale im Schweizer Wald. Auswertung der Nutzungsszenarien und Waldwachstumsentwicklung, p 80Google Scholar
  25. Imesch N, Stadler B, Bolliger M, Schneider O (2015) Biodiversität im Wald: Ziele und Massnahmen. Vollzugshilfe zur Erhaltung und Förderung der biologischen Vielfalt im Schweizer Wald. Federal Office for the Environment FOEN, BernGoogle Scholar
  26. Jakoby O, Stadelmann G, Lischke H, Wermelinger B (2016) Borkenkäfer und Befallsdisposition der Fichte im Klimawandel. In: Pluess AR, Augustin S, Brang P (eds) Wald im Klimawandel. Grundlagen für Aaptionsstrategien. Bundesamt für Umwelt BAFU Bern; Eidg. Forschungsanstalt WSL, Birmensdorf; Haupt, Bern, Stuttgart, Wien, pp 247–264Google Scholar
  27. Kanton Aargau (2012) Naturschutzprogramm Wald, Zwischenbericht 2013, Ziele und Handlungsbedarf vierte Etappe. Abteilung Wald, Departement Bau, Verkehr und Umwelt, Kanton Aargau, AarauGoogle Scholar
  28. Kaufmann E (2001) Prognosis and management scenarios. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 197–206Google Scholar
  29. Kaufmann E (2011) Nachhaltiges Holzproduktionspotenzial im Schweizer Wald. Schweiz Z Forstwes 162:300–311. doi: 10.3188/szf.2011.0300 CrossRefGoogle Scholar
  30. Keller W, Wohlgemuth T, Kuhn N et al (1998) Waldgesellschaften der Schweiz auf floristischer Grundlage—statistisch überarbeitete Fassung der “Waldgesellschaften und Waldstandorte der Schweiz” von Heinz Ellenberg und Frank Klötzli (1972). Mitteilungen Eidgenöss Forschungsanstalt Für Wald Schnee Landsch 73:1–357Google Scholar
  31. Knoke T (2009) Zur finanziellen Attraktivität von Dauerwaldwirtschaft und Überführung: eine Literaturanalyse. Schweiz Z Forstwes 160:152–161. doi: 10.3188/szf.2009.0152 CrossRefGoogle Scholar
  32. Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, von Gadow K (eds) Continuous cover forestry. Springer, Netherlands, pp 167–193CrossRefGoogle Scholar
  33. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modelling. Ecol Model 210:487–498. doi: 10.1016/j.ecolmodel.2007.08.011 CrossRefGoogle Scholar
  34. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101. doi: 10.1007/s10342-007-0186-2 CrossRefGoogle Scholar
  35. Köchli DA, Brang P (2005) Simulating effects of forest management on selected public forest goods and services: a case study. For Ecol Manag 209:57–68. doi: 10.1016/j.foreco.2005.01.009 CrossRefGoogle Scholar
  36. Köhl M (2001) Inventory concept NFI2. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 19–46Google Scholar
  37. Koskela E, Ollikainen M, Pukkala T (2007) Biodiversity conservation in commercial boreal forestry: the optimal rotation age and retention tree volume. For Sci 53:443–452Google Scholar
  38. Kraft U (2015) Wood end use. For. Rep. 2015 Cond. Use Swiss For. Swiss Federal Office for the Environment FOEN, Bern, and Swiss Federal Institute for Forest, Snow and Landscape Reseach WSL, Birmensdorf, pp 114–115Google Scholar
  39. Kramer K, Degen B, Buschbom J et al (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—range, abundance, genetic diversity and adaptive response. For Ecol Manag 259:2213–2222. doi: 10.1016/j.foreco.2009.12.023 CrossRefGoogle Scholar
  40. Kroiher F, Oehmichen K (2010) Das Potenzial der Totholzakkumulation im deutschen Wald. Schweiz Z Forstwes 161:171–180. doi: 10.3188/szf.2010.0171 CrossRefGoogle Scholar
  41. Läderach T, Streiff H (2016) Jetzt in den jungen Wald investieren. Medienmitteilung zur Publikation der Forststatistik 2015Google Scholar
  42. Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Ann For Sci 71:173–186. doi: 10.1007/s13595-013-0291-y CrossRefGoogle Scholar
  43. Lauri P, Kallio AMI, Schneider UA (2012) Price of CO2 emissions and use of wood in Europe. For Policy Econ 15:123–131. doi: 10.1016/j.forpol.2011.10.003 CrossRefGoogle Scholar
  44. Lévesque M, Saurer M, Siegwolf R et al (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19:3184–3199. doi: 10.1111/gcb.12268 CrossRefGoogle Scholar
  45. Lexer M, Brooks R (2005) Decision support for multiple purpose forestry. For Ecol Manag 207:1–3. doi: 10.1016/j.foreco.2004.11.002 CrossRefGoogle Scholar
  46. Mette T, Dolos K, Meinardus C et al (2013) Climatic turning point for beech and oak under climate change in central Europe. Ecosphere. doi: 10.1890/ES13-00115.1 Google Scholar
  47. Mina M, Bugmann H, Klopcic M, Cailleret M (2015) Accurate modeling of harvesting is key for projecting future forest dynamics: a case study in the Slovenian mountains. Reg Environ Change. doi: 10.1007/s10113-015-0902-2 Google Scholar
  48. Mina M, Bugmann H, Cordonnier T et al (2016) Future ecosystem services from European mountain forests under climate change. J Appl Ecol. doi: 10.1111/1365-2664.12772 Google Scholar
  49. Morier A (2012) Umsetzung des naturnahen Waldbaus im Kanton Aargau. Haltung des kantonalen ForstdienstesGoogle Scholar
  50. Morin X, Fahse L, de Mazancourt C et al (2014) Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol Lett. doi: 10.1111/ele.12357 PubMedGoogle Scholar
  51. Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992. doi: 10.1007/s10342-010-0400-5 CrossRefGoogle Scholar
  52. Nabuurs G-J, Delacote P, Ellison D et al (2015) A new role for forests and the forest sector in the EU post-2020 climate targets. From Science to Policy 2. European Forest InstituteGoogle Scholar
  53. Netherer S, Matthews B, Katzensteiner K et al (2015) Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol 205:1128–1141. doi: 10.1111/nph.13166 CrossRefPubMedGoogle Scholar
  54. Neuner S, Albrecht A, Cullmann D et al (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol 21:935–946. doi: 10.1111/gcb.12751 CrossRefGoogle Scholar
  55. Niedermann-Meier S, Mordini M, Bütler R, Rotach P (2010) Habitatbäume im Wirtschaftswald: ökologisches Potenzial und finanzielle Folgen für den Betrieb. Schweiz Z Forstwes 161:391–400. doi: 10.3188/szf.2010.0391 CrossRefGoogle Scholar
  56. Pedro MS, Rammer W, Seidl R (2014) Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia 177:619–630. doi: 10.1007/s00442-014-3150-0 CrossRefPubMedGoogle Scholar
  57. Perhans K, Glöde D, Gilbertsson J et al (2011) Fine-scale conservation planning outside of reserves: cost-effective selection of retention patches at final harvest. Ecol Econ 70:771–777. doi: 10.1016/j.ecolecon.2010.11.014 CrossRefGoogle Scholar
  58. Peters DM, Wirth K, Böhr B et al (2015) Energy wood from forests—stakeholder perceptions in five European countries. Energy Sustain Soc. doi: 10.1186/s13705-015-0045-9 Google Scholar
  59. Pluess AR, Frank A, Heiri C et al (2016) Genome–environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica. New Phytol 210:589–601. doi: 10.1111/nph.13809 CrossRefPubMedGoogle Scholar
  60. Pretzsch H, Grote R, Reineking B et al (2008) Models for forest ecosystem management: a European perspective. Ann Bot 101:1065–1087. doi: 10.1093/aob/mcm246 CrossRefPubMedGoogle Scholar
  61. Pukkala T, Laiho O, Lähde E (2016) Continuous cover management reduces wind damage. For Ecol Manag 372:120–127. doi: 10.1016/j.foreco.2016.04.014 CrossRefGoogle Scholar
  62. Rosenvald R, Lõhmus A (2008) For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity aspects. For Ecol Manag 255:1–15. doi: 10.1016/j.foreco.2007.09.016 CrossRefGoogle Scholar
  63. Rosenvald R, Lõhmus A, Kraut A, Remm L (2011) Bird communities in hemiboreal old-growth forests: the roles of food supply, stand structure, and site type. For Ecol Manag 262:1541–1550. doi: 10.1016/j.foreco.2011.07.002 CrossRefGoogle Scholar
  64. Schmidt UE (2009) Wie erfolgreich war das Dauerwaldkonzept bislang: eine historische Analyse. Schweiz Z Forstwes 160:144–151. doi: 10.3188/szf.2009.0144 CrossRefGoogle Scholar
  65. Seidl R, Rammer W, Jäger D et al (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248:64–79. doi: 10.1016/j.foreco.2007.02.035 CrossRefGoogle Scholar
  66. Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17:2842–2852. doi: 10.1111/j.1365-2486.2011.02452.x CrossRefGoogle Scholar
  67. Stadelmann G, Herold A, Didion M et al (2016) Holzerntepotenzial im Schweizer Wald: simulation von Bewirtschaftungsszenarien. Schweiz Z Forstwes 167:152–161. doi: 10.3188/szf.2016.0152 CrossRefGoogle Scholar
  68. Stierlin HR, Zinggeler J (2001) Terrestrial inventory. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Research Institute WSL, Birmensdorf, pp 65–87Google Scholar
  69. Stocker R, Burger T, Elsener O et al (2002) Die Waldstandorte des Kantons Aargau. Finanzdepartment des Kantons Aargau, Abteilung Wald, AarauGoogle Scholar
  70. Streiff H (2014) Mehr Fitness statt Forschung im Wald und im Sägewerk. Holz-Zentralblatt 40:963Google Scholar
  71. Sweeney OFM, Wilson MW, Irwin S et al (2010) Are bird density, species richness and community structure similar between native woodlands and non-native plantations in an area with a generalist bird fauna? Biodivers Conserv 19:2329–2342. doi: 10.1007/s10531-010-9844-7 CrossRefGoogle Scholar
  72. Tarp P, Buongiorno J, Helles F et al (2005) Economics of converting an even-aged Fagus sylvatica stand to an uneven-aged stand using target diameter harvesting. Scand J For Res 20:63–74. doi: 10.1080/02827580510008176 CrossRefGoogle Scholar
  73. Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. doi: 10.1890/12-0210.1 CrossRefPubMedGoogle Scholar
  74. Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi: 10.1890/12-1503.1 CrossRefGoogle Scholar
  75. Temperli C, Stadelmann G, Thürig E, Brang P (2017) Silvicultural strategies for increased timber harvesting in a central European mountain landscape. Eur J For Res 136:493–509. doi: 10.1007/s10342-017-1048-1 CrossRefGoogle Scholar
  76. Thom D, Rammer W, Seidl R (2017) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol 23:269–282. doi: 10.1111/gcb.13506 CrossRefGoogle Scholar
  77. Thürig E, Kaufmann E (2010) Increasing carbon sinks through forest management: a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps. Eur J For Res 129:563–572. doi: 10.1007/s10342-010-0354-7 CrossRefGoogle Scholar
  78. Thürig E, Kaufmann E, Frisullo R, Bugmann H (2005) Evaluation of the growth function of an empirical forest scenario model. For Ecol Manag 204:53–68. doi: 10.1016/j.foreco.2004.07.070 CrossRefGoogle Scholar
  79. Tikkanen O-P, Matero J, Mönkkönen M et al (2012) To thin or not to thin: bio-economic analysis of two alternative practices to increase amount of coarse woody debris in managed forests. Eur J For Res 131:1411–1422. doi: 10.1007/s10342-012-0607-8 CrossRefGoogle Scholar
  80. Traub B, Meile R, Speich S, Rösler E (2017) The data storage and analysis system of the Swiss National Forest Inventory. Comput Electron Agric 132:97–107. doi: 10.1016/j.compag.2016.11.016 CrossRefGoogle Scholar
  81. UNECE-FAO (2011) The European Forest sector outlook study II: 2010–2030. United Nations, GenevaGoogle Scholar
  82. Verkerk PJ, Mavsar R, Giergiczny M et al (2014) Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests. Ecosyst Serv 9:155–165. doi: 10.1016/j.ecoser.2014.06.004 CrossRefGoogle Scholar
  83. Verscheure P (1998) Energiegehalt von Hackschnitzeln—Überblick und Anleitung zur Bestimmung. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Freiburg im BreisgauGoogle Scholar
  84. Vuidot A, Paillet Y, Archaux F, Gosselin F (2011) Influence of tree characteristics and forest management on tree microhabitats. Biol Conserv 144:441–450. doi: 10.1016/j.biocon.2010.09.030 CrossRefGoogle Scholar
  85. WaldSchweiz (2017) Preise Stammholz—Roholz-Preiserhebung 2016/16. WaldSchweiz—Verband Waldeigentümer. http://www.waldschweiz.ch/schweizer-wald/holzmarkt/preise-stammholz/preise-stammholz.html. Accessed 10 May 2017
  86. WaldSchweiz, Forstunternehmer Schweiz, Holzindustrie Schweiz et al (2016) Energieholzpreise 2016/2017. Wald Holz 11:19Google Scholar
  87. Werner F, Taverna R, Hofer P et al (2010) National and global greenhouse gas dynamics of different forest management and wood use scenarios: a model-based assessment. Environ Sci Policy 13:72–85. doi: 10.1016/j.envsci.2009.10.004 CrossRefGoogle Scholar
  88. Wittwer R (2016) 20 Jahre Naturschutzprogramm Wald. Umw Aargau, pp 45–48Google Scholar
  89. Yousefpour R, Hanewinkel M (2014) Balancing decisions for adaptive and multipurpose conversion of Norway spruce (Picea abies L. Karst) monocultures in the Black Forest area of Germany. For Sci 60:73–84. doi: 10.5849/forsci.11-125 Google Scholar
  90. Zubler EM, Scherrer SC, Croci-Maspoli M et al (2014) Key climate indices in Switzerland; expected changes in a future climate. Clim Change 123:255–271. doi: 10.1007/s10584-013-1041-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland

Personalised recommendations