European Journal of Forest Research

, Volume 136, Issue 4, pp 625–637 | Cite as

Intra-annual leaf phenology, radial growth and structure of xylem and phloem in different tree parts of Quercus pubescens

  • Jožica Gričar
  • Martina Lavrič
  • Mitja Ferlan
  • Dominik Vodnik
  • Klemen Eler
Original Paper


Basic knowledge of the intra-annual timings of leaf development and radial growth (including the phloem part) in different tree parts is generally missing although such rudimentary data are crucial to link the structure and function of vascular tissues at the whole tree level. To understand better the time course of leaf development and radial growth patterns in different tree parts, we studied leaf phenology and intra-annual xylem and phloem formation and structure in the stem and at two locations in branches of sub-Mediterranean Quercus pubescens in 2015. Onset and end dates of cambial cell production were synchronized at the two locations in branches, but were different at the stem base. The period of cell production was thus a month longer in the stem, resulting in 82.8 and 45.1% wider xylem and phloem increments, respectively. In addition, the xylem ring was wider than the phloem ring in all three parts. Thus, phloem ring widths in stem represented 24.8% and in branches 79.4% of the xylem ring width. Earlywood occupied 52.9% (stem) and 74.9% (branches) of the xylem ring, and early phloem 53.7% (stem) and 43.3% (branches) of the phloem ring. Most of the annual radial increment (i.e. xylem and phloem increments) in stem and branches was formed prior to full leaf development. Latewood and late phloem were formed in the period of full leaf unfolding. Our study confirmed that the temporal sequence of leaf development and radial growth are not contemporary in Q. pubescens. Different intra-annual patterns of radial growth in different tree parts result in different structures of xylem and phloem, which is in line with different roles of stem and branches in terms of tree functioning.


Pubescent oak Sub-Mediterranean climate Cambium Stem Branch Earlywood vessel 



The authors gratefully acknowledge the help of Boštjan Zupanc, Adriana Podržaj and Tina Rus in the field and laboratory. We thank Zlatko Rojc for his permission to perform the study on the plot, and Martin Cregeen for language editing. We thank the reviewers for their valuable comments and suggestions, which improved the quality of the paper.


This work was supported by the Slovenian Research Agency, Young Researchers’ Program (Martina Lavrič), research core funding Nos. P4-0085 and P4-0107, Project J4-7203 (short- and long-term responses of oak in sub-Mediterranean region to extreme weather events using a tree anatomical analysis and ecophysiological measurements) and by the FP7 Capacities Project EUFORINNO (REGPOT No. 315985).

Author contributions

JG, ML and KE conceived and designed the work; ML, JG and KE collected the data; all authors analysed and interpreted the data; JG and ML drafted the manuscript; all authors critically revised the manuscript; all authors approved the final version of the manuscript to be published.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. Aloni R (2001) Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J Plant Growth Regul 20:22–34CrossRefGoogle Scholar
  2. Aloni R (2015) Ecophysiological implications of vascular differentiation and plant evolution. Trees 29:1–16. doi: 10.1007/s00468-014-1070-6 CrossRefGoogle Scholar
  3. Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis. Differentiation 24:203–208. doi: 10.1111/j.1432-0436.1983.tb01320.x CrossRefGoogle Scholar
  4. Aloni R, Alexander JD, Tyree MT (1997) Natural and experimentally altered hydraulic architecture of branch junctions in Acer saccharum Marsh. and Quercus velutina Lam. trees. Trees 11:255–264. doi: 10.1007/pl00009672 Google Scholar
  5. Anfodillo T, Deslauriers A, Menardi R, Tedoldi L, Petit G, Rossi S (2012) Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J Exp Bot 63:837–845. doi: 10.1093/jxb/err309 CrossRefPubMedGoogle Scholar
  6. Anfodillo T, Petit G, Crivellaro A (2013) Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA J 34:352–364. doi: 10.1163/22941932-00000030 CrossRefGoogle Scholar
  7. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210CrossRefPubMedGoogle Scholar
  8. Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–615. doi: 10.1046/j.1469-8137.2003.00681.x CrossRefGoogle Scholar
  9. Bréda N, Granier A (1996) Intra- and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand (Quercus petraea). Ann Sci For 53:521–536CrossRefGoogle Scholar
  10. Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407CrossRefPubMedGoogle Scholar
  11. Čufar K, De Luis M, Prislan P, Gričar J, Črepinšek Z, Merela M, Kajfež-Bogataj L (2015) Do variations in leaf phenology affect radial growth variations in Fagus sylvatica? Int J Biometeorol 59:1127–1132. doi: 10.1007/s00484-014-0896-3 CrossRefPubMedGoogle Scholar
  12. Damesin C, Rambal S (1995) Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought. New Phytol 131:159–167. doi: 10.1111/j.1469-8137.1995.tb05717.x CrossRefGoogle Scholar
  13. Dayan J, Voronin N, Gong F, T-P Sun, Hedden P, Fromm H, Aloni R (2012) Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 24:66–79. doi: 10.1105/tpc.111.093096 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dickson RE, Tomlinson PT, Isebrands JG (2000) Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth. Can J For Res 30:1308–1317. doi: 10.1139/x00-056 CrossRefGoogle Scholar
  15. Essiamah S, Eschrich W (1986) Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation. IAWA J 7:31–38. doi: 10.1163/22941932-90000435 CrossRefGoogle Scholar
  16. Ferlan M, Alberti G, Eler K, Batič F, Peressotti A, Miglietta F, Zaldei A, Simončič P, Vodnik D (2011) Comparing carbon fluxes between different stages of secondary succession of a karst grassland. Agric Ecosyst Environ 140:199–207. doi: 10.1016/j.agee.2010.12.003 CrossRefGoogle Scholar
  17. Franceschi VR, Krokene P, Krekling T, Christiansen E (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark-beetle attack in Norway spruce (Pinaceae). Am J Bot 87:314–326CrossRefPubMedGoogle Scholar
  18. Frankenstein C, Eckstein D, Schmitt U (2005) The onset of cambium activity—a matter of agreement? Dendrochronologia 23:57–62. doi: 10.1016/j.dendro.2005.07.007 CrossRefGoogle Scholar
  19. Gričar J (2010) Xylem and phloem formation in sessile oak from Slovenia in 2007. Wood Res 55:15–22Google Scholar
  20. Gričar J, Zupančič M, Čufar K, Oven P (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41:463–475. doi: 10.1007/s00226-006-0109-2 CrossRefGoogle Scholar
  21. Gričar J, Jagodic Š, Šefc B, Trajković J, Eler K (2014) Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality? Eur J For Res 133:551–562. doi: 10.1007/s10342-014-0784-8 CrossRefGoogle Scholar
  22. Juárez-López FJ, Escudero A, Mediavilla S (2008) Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiol 28:367–374. doi: 10.1093/treephys/28.3.367 CrossRefPubMedGoogle Scholar
  23. Jyske T, Hölttä T (2015) Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol 205:102–115. doi: 10.1111/nph.12973 CrossRefPubMedGoogle Scholar
  24. Kraus C, Zang C, Menzel A (2016) Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur J For Res 135:1011–1023. doi: 10.1007/s10342-016-0990-7 CrossRefGoogle Scholar
  25. Lachaud S, Bonnemain J-L (1981) Xylogenèse chez les Dicotylédones arborescentes. I. Modalités de la remise en activité du cambium et de la xylogenèse chez les Hêtres et les Chênes âgés. Can J Bot 59:1222–1230. doi: 10.1139/b81-167 CrossRefGoogle Scholar
  26. Lachaud S, Catesson AM, Bonnemain JL (1999) Structure and functions of the vascular cambium. Life Sci 322:633–650Google Scholar
  27. Ladefoged K (1952) The periodicity of wood formation. Biol Skr 7:1–98Google Scholar
  28. Lavrič M, Eler K, Ferlan M, Vodnik D, Gričar J (2017) Chronological sequence of leaf phenology, xylem and phloem formation and sap flow of Quercus pubescens from abandoned karst grasslands. Front Plant Sci. doi: 10.3389/fpls.2017.00314 PubMedPubMedCentralGoogle Scholar
  29. Loescher WH, McCamant T, Keller JD (1990) Carbohydrate reserves, translocation, and storage in woody plant roots. HortScience 25:274–281Google Scholar
  30. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski F-E, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  31. Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M (2014) Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecol Lett 17:988–997. doi: 10.1111/ele.12302 CrossRefPubMedGoogle Scholar
  32. Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  33. Petit G, Crivellaro A (2014) Comparative axial widening of phloem and xylem conduits in small woody plants. Trees 28:915–921. doi: 10.1007/s00468-014-1006-1 CrossRefGoogle Scholar
  34. Pfautsch S, Hölttä T, Mencuccini M (2015) Hydraulic functioning of tree stems—fusing ray anatomy, radial transfer and capacitance. Tree Physiol 35:706–722. doi: 10.1093/treephys/tpv058 CrossRefPubMedGoogle Scholar
  35. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523CrossRefPubMedPubMedCentralGoogle Scholar
  36. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi: 10.1111/j.1469-8137.2011.03803.x CrossRefPubMedGoogle Scholar
  37. Prislan P, Schmitt U, Koch G, Gričar J, Čufar K (2011) Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. IAWA J 32:443–459. doi: 10.1163/22941932-90000070 Google Scholar
  38. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  39. Rao RV, Aebischer DP, Denne MP (1997) Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J 18:127–138CrossRefGoogle Scholar
  40. Rosell JA, Castorena M, Laws CA, Westoby M (2015) Bark ecology of twigs vs. main stems: functional traits across eighty-five species of angiosperms. Oecologia 178:1033–1043. doi: 10.1007/s00442-015-3307-5 CrossRefPubMedGoogle Scholar
  41. Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39CrossRefGoogle Scholar
  42. Rossi S, Anfodillo T, Menardi R (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97CrossRefGoogle Scholar
  43. Rossi S, Rathgeber CBK, Deslauriers A (2009) Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Ann For Sci 66:1–8. doi: 10.1051/forest/2008088 CrossRefGoogle Scholar
  44. Rossi S, Morin H, Deslauriers A, Plourde PY (2011) Predicting xylem phenology in black spruce under climate warming. Glob Change Biol 17:614–625. doi: 10.1111/j.1365-2486.2010.02191.x CrossRefGoogle Scholar
  45. Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252. doi: 10.1007/bf00202014 CrossRefGoogle Scholar
  46. Sass-Klaassen U, Sabajo CR, den Ouden J (2011) Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29:171–175. doi: 10.1016/j.dendro.2011.01.002 CrossRefGoogle Scholar
  47. Sass-Klaassen U, Fonti P, Cherubini P, Gričar J, Robert EMR, Steppe K, Bräuning A (2016) A tree-centered approach to assess impacts of extreme climatic events on forests. Front Plant Sci. doi: 10.3389/fpls.2016.01069 Google Scholar
  48. Stojnic S, Sass-Klaassen U, Orlovic S, Matovic B, Eilmann B (2013) Plastic growth response of european beech provenances to dry site conditions. IAWA J 34:475–484. doi: 10.1163/22941932-00000038 CrossRefGoogle Scholar
  49. Suzuki M, Yoda K, Suzuki H (1996) Phenological comparison on the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest. IAWA J 17:431–444CrossRefGoogle Scholar
  50. Takahashi S, Okada N, Nobuchi T (2013) Relationship between the timing of vessel formation and leaf phenology in ten ring-porous and diffuse-porous deciduous tree species. Ecol Res 28:615–624. doi: 10.1007/s11284-013-1053-x CrossRefGoogle Scholar
  51. Tyree MT, Zimmermann MH (2010) Xylem structure and the ascent of sap, 2nd edn. Springer, BerlinGoogle Scholar
  52. Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039CrossRefPubMedPubMedCentralGoogle Scholar
  53. van der Werf GW, Sass-Klaassen U, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112CrossRefGoogle Scholar
  54. Vilhar U, Skudnik M, Simončič P (2013) Phenological phases of trees on the intensive forest monitoring plots in Slovenia. Acta Silvae et Ligni 100:5–17. doi: 10.20315/ASetL.100.1 CrossRefGoogle Scholar
  55. Wareing PF (1950) Extension and radial growth in trees. Nature 166:278CrossRefPubMedGoogle Scholar
  56. Zasada JC, Zahner R (1969) Vessel element development in the earlywood of red oak (Quercus rubra). Can J Bot 47:1965–1971. doi: 10.1139/b69-288 CrossRefGoogle Scholar
  57. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi: 10.1093/jxb/erj125 CrossRefPubMedGoogle Scholar
  58. Zweifel R, Steppe K, Sterck FJ (2007) Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. J Exp Bot 58:2113–2131. doi: 10.1093/jxb/erm050 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Yield and SilvicultureSlovenian Forestry InstituteLjubljanaSlovenia
  2. 2.Department of Forest EcologySlovenian Forestry InstituteLjubljanaSlovenia
  3. 3.Department of Agronomy, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations