European Journal of Forest Research

, Volume 136, Issue 2, pp 319–328 | Cite as

Thinning increases drought tolerance of European beech: a case study on two forested slopes on opposite sides of a valley

  • Daniela Diaconu
  • Hans-Peter Kahle
  • Heinrich Spiecker
Original Paper

Abstract

European beech (Fagus sylvatica L.) is one of the economically most important broadleaved tree species in Central Europe. However, beech shows high drought sensitivity and calls for profound research to test its ability to cope with limited water resources. Here, we investigated the drought tolerance of beech to the 2003 drought as influenced by Kraft class, aspect and thinning intensity. Annual basal area increment data of 126 sample trees from southwest Germany were used to assess the variability of drought tolerance indices, by comparing three social classes (predominant, dominant and co-dominant), two contrasting sites [a dry southwest (SW) aspect and a moist northeast (NE) aspect], and three treatments [control, strong thinning (stand basal area 15 m2 ha−1) and very strong thinning (stand basal area 10 m2 ha−1)] in mature beech stands. Our results show that the co-dominant and dominant trees had lower growth recovery and lower growth resilience after the drought, compared to the predominant trees. The differences between aspects pointed to a growth–drought tolerance trade-off, in which trees on the SW aspect displayed lower growth rates but higher resilience indices than trees on the moist NE aspect. Furthermore, our results suggest that the resistance to and resilience after the 2003 drought significantly increased for the thinned trees. Our results provide novel insights into the linkage between the forest stand management and drought tolerance of beech under contrasting sites. We conclude that thinning can partially alleviate effects of severe drought on European beech forests in southwest Germany and can be applied as an adaptive measure to increase the mitigation potential of beech stands.

Keywords

Fagus sylvatica Adaptive management Resistance Recovery Resilience Kraft class 

Notes

Acknowledgments

This study used material from the collaborative research project SFB 433 (“Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen”-Beech-dominated deciduous forests under the influence of climate and forest management). D.D. is funded by the project BuKlim within the Waldklimafonds program of BMEL/BMUB—“Gefördert durch Bundesministerium für Ernährung und Landwirtschaft und das Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit aufgrund eines Beschlusses des Deutschen Bundestages” (28W-C-4-052-01). Two anonymous reviewers helped to improve an earlier version of this manuscript.

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

10342_2017_1033_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, gilsa H von, Huss J, kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer HU, Palmer S, Reif A, Rehfuess KE, Stimm B (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa: Kritische Anmerkungen zu einem Beitrag von RENNENBERG et al. (2004). Allgemeine Forst- und Jagd Zeitung 176:60–67Google Scholar
  2. Anderegg WRL, Plavcova L, Anderegg LDL, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Change Biol 19(4):1188–1196. doi: 10.1111/gcb.12100 CrossRefGoogle Scholar
  3. Assmann E (1970) The principles of forest yield study. Pergamon Press, OxfordGoogle Scholar
  4. Bates DM (2010) lme4: Mixed-effects modeling with R. Springer, MadisonGoogle Scholar
  5. Bohn U, Gollub G, Hettwer C, Weber H, Neuhäuslová Z, Raus T, Schlüter H (2003) Map of the natural vegetation of Europe—Scale 1:2 500 000, map and explanatory text. Landwirtschaftsverlag, MünsterGoogle Scholar
  6. Bosela M, Štefančík I, Petráš R, Vacek S (2016) The effects of climate warming on the growth of European beech forests depend critically on thinning strategy and site productivity. Agric For Meteorol 222:21–31. doi: 10.1016/j.agrformet.2016.03.005 CrossRefGoogle Scholar
  7. Breda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306CrossRefPubMedGoogle Scholar
  8. Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2015) dplR: dendrochronology program library in R. R package version 1.6.3Google Scholar
  9. Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manage 102(2–3):213–223. doi: 10.1016/S0378-1127(97)00163-1 CrossRefGoogle Scholar
  10. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (eds) (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New YorkGoogle Scholar
  11. Diaconu D, Kahle H-P, Spiecker H (2015) Tree- and stand-level thinning effects on growth of European beech (Fagus sylvatica L.) on a northeast- and a southwest-facing slope in southwest Germany. Forests 6(9):3256–3277. doi: 10.3390/f6093256 CrossRefGoogle Scholar
  12. Diaconu D, Stangler DF, Kahle H-P, Spiecker H (2016a) Vessel plasticity of European beech in response to thinning and aspect. Tree Physiol. doi: 10.1093/treephys/tpw053 PubMedGoogle Scholar
  13. Diaconu D, Wassenberg M, Spiecker H (2016b) Variability of European beech wood density as influenced by interactions between tree-ring growth and aspect. For Ecosyst 3(6):1–9. doi: 10.1186/s40663-016-0065-8 Google Scholar
  14. Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manage 173(1–3):63–78. doi: 10.1016/S0378-1127(01)00816-7 CrossRefGoogle Scholar
  15. Eilmann B, Sterck F, Wegner L, de Vries SMG, von Arx G, Mohren GMJ, den Ouden J, Sass-Klaassen U (2014) Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiol 34(8):882–893. doi: 10.1093/treephys/tpu069 CrossRefPubMedGoogle Scholar
  16. Elkin C, Giuggiola A, Rigling A, Bugmann H (2015) Short and longterm efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl 25(4):1083–1098CrossRefPubMedGoogle Scholar
  17. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht: 170 Tabellen, 5., stark veränd. und verb. Aufl. UTB, vol 8104. Ulmer, StuttgartGoogle Scholar
  18. Fotelli MN, Rennenberg H, Geßler A (2002) Effects of drought on the competitive interference of an early successional species (Rubus fruticosus) on Fagus sylvatica L. seedlings: 15 N uptake and partitioning, responses of amino acids and other N compounds. Plant Biol 4(3):311–320. doi: 10.1055/s-2002-32334 CrossRefGoogle Scholar
  19. Gessler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150(3):653–664. doi: 10.1046/j.1469-8137.2001.00136.x CrossRefGoogle Scholar
  20. Geßler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J Forest Res 124(2):95–111. doi: 10.1007/s10342-005-0055-9 CrossRefGoogle Scholar
  21. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1):1–11. doi: 10.1007/s00468-006-0107-x CrossRefGoogle Scholar
  22. Hacke U, Sperry J (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4(2):97–115. doi: 10.1078/1433-8319-00017 CrossRefGoogle Scholar
  23. Hacke U, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4):457–461. doi: 10.1007/s004420100628 CrossRefGoogle Scholar
  24. Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  25. Hildebrand E, Augustin S, Schack-Kirchner H (1998) Bodenkundliche Charakterisierung der Kernflächen. In: Rennenberg H (ed) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen—Vorcharakterisierung der Untersuchungsflächen. Eigenverlag der Universität Freiburg, Freiburg, pp 7–12Google Scholar
  26. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363CrossRefPubMedGoogle Scholar
  27. Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J Forest Res 129(6):1109–1118. doi: 10.1007/s10342-010-0397-9 CrossRefGoogle Scholar
  28. Kraft G (1884) Beiträge zur Lehre von den Durchforstungen. Schlagstellungen und Lichtungshieben. Klindworth’s Verlag, HannoverGoogle Scholar
  29. Kuznetsova A, Brockhoff PB, Christensen R (2014) lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-29Google Scholar
  30. Le Goff N, Ottorini J-M (1993) Thinning and climate effects on growth of beech (Fagus sylvatica L.) in experimental stands. For Ecol Manage 62:1–14CrossRefGoogle Scholar
  31. Lenth R, Herve M (2015) lsmeans: least-squares means. R package version 2.18Google Scholar
  32. Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120(12):1909–1920. doi: 10.1111/j.1600-0706.2011.19372.x CrossRefGoogle Scholar
  33. Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze E-D, Ammer C (2015) Site adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Change Biol. doi: 10.1111/gcb.13113 Google Scholar
  34. Montwé D, Isaac-Renton M, Hamann A, Spiecker H (2015a) Drought tolerance and growth in populations of a wide-ranging tree species indicate climate change risks for the boreal north. Glob Change Biol. doi: 10.1111/gcb.13123 Google Scholar
  35. Montwé D, Spiecker H, Hamann A (2015b) Five decades of growth in a genetic field trial of Douglas-fir reveal trade-offs between productivity and drought tolerance. Tree Genet Genomes 11(2):1–11. doi: 10.1007/s11295-015-0854-1 CrossRefGoogle Scholar
  36. Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J-C, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 185(2):481–492. doi: 10.1111/j.1469-8137.2009.03092.x CrossRefPubMedGoogle Scholar
  37. Pretzsch H (2010) Forest dynamics, growth and yield. Springer, BerlinCrossRefGoogle Scholar
  38. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40(2):370–384. doi: 10.1139/X09-195 CrossRefGoogle Scholar
  39. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15(3):483–495. doi: 10.1111/j.1438-8677.2012.00670.x CrossRefPubMedGoogle Scholar
  40. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  41. Rennenberg H, Seiler W, Matyssek R, Geßler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.) ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? AFJZ 175:210–244Google Scholar
  42. Sohn JA, Saha S, Bauhus J (2016) Potential of forest thinning to mitigate drought stress: a meta-analysis. For Ecol Manage 380:261–273. doi: 10.1016/j.foreco.2016.07.046 CrossRefGoogle Scholar
  43. Spiecker H (1991) Controlling the diameter growth and the natural pruning of Sessile and Pedunculate oaks. Habilitation. Selbstverlag der Landesforstverwaltung Baden-Württemberg, StuttgartGoogle Scholar
  44. Spiecker H, Tilman E, Park Y, Hansen J, Schinker MG, Döll W (2000) Cell structure in tree rings: novel methods for preparation and image analysis of large cross sections. IAWA J 21(3):361–373. doi: 10.1163/22941932-90000253 CrossRefGoogle Scholar
  45. Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ 38(9):1699–1712. doi: 10.1111/pce.12417 CrossRefGoogle Scholar
  46. van der Maaten E (2012a) Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26(3):777–788. doi: 10.1007/s00468-011-0645-8 CrossRefGoogle Scholar
  47. van der Maaten E (2012b) Intra- and interannual growth responses of European beech (Fagus sylvativa L.) to climate, aspect and thinning in the Swabian Alb - southwestern Germany. Dissertation, Albert-Ludwigs-Universität FreiburgGoogle Scholar
  48. Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration, and resistance to water uptake in a Pinussylvestris spacing experiment. Can J For Res 14(5):692–700CrossRefGoogle Scholar
  49. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20CrossRefGoogle Scholar
  50. Wickham H (2009) Ggplot2. Elegant graphics for data analysis. Use R!. Springer, DordrechtGoogle Scholar
  51. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(1):1–29CrossRefGoogle Scholar
  52. Wickham H (2016) Tidyr: easily tidy data with ‘spread()’ and ‘gather()’ functions. R package version 0.4.1. https://CRAN.R-project.org/package=tidyr
  53. Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20(12):3767–3779. doi: 10.1111/gcb.12637 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniela Diaconu
    • 1
  • Hans-Peter Kahle
    • 1
  • Heinrich Spiecker
    • 1
  1. 1.Chair of Forest Growth and DendroecologyAlbert-Ludwigs-University FreiburgFreiburgGermany

Personalised recommendations