Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model

  • 489 Accesses

  • 16 Citations

Abstract

Recommendations on suitable seed sources for reforestation are usually model based and include uncertainties arising from model assumptions, parameter estimation, and future climate scenarios. Due to the long-lived nature of forests, such uncertainties need to be considered when developing guidance for managers and policy makers. We evaluate the uncertainties and apply our recently developed genetically based models, Universal Response Functions (URFs) in Austria and Germany. The URFs predict growth performance (dominant height and basal area at age 24) of Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) populations, as a function of both environmental and genetic factors. We evaluated the URFs by comparing the predicted height growth performances with observations from independent provenance trial data across Europe. Also, the sensitivity of the URF variables and the overall model uncertainty were estimated and compared to the uncertainty due to climate change projections. Model evaluation suggests that the URFs perform better in Central and Southeastern Europe compared to maritime Western Europe. Summer drought and mean annual temperature of planting sites were the most sensitive variables of the models, whereas the mean annual temperature of seed origin was the least sensitive. Model uncertainty increased with mean annual temperature of the planting site. Uncertainty due to projected future climate was found to be higher than the model uncertainty. The URFs predicted that provenance regions of southwest Germany and southeast Austria below 1500 m altitude will be suitable, whereas Pannonian east of Austria will become less suitable for growing Douglas-fir in future. Current seed stands in North America providing planting materials for Europe under the legal framework of the Organization for Economic Cooperation and Development shall continue to provide the most suitable seed material also in the future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albert M, Hansen J, Nagel J et al (2015) Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. For Ecosyst 2:14

  2. Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For Ecol Manage 205:169–182

  3. Audet C, Orban D (2006) Finding optimal algorithmic parameters using derivative-free optimization. SIAM J Optim 17:642–664

  4. Aussenac G (1980) Premiers résultats d’une étude de l’influence de l’alimentation en eau sur la croissance des arbres dans un peuplement de Douglas (Pseudotsuga menziesii (Mirb.) Franco) [Preliminary results of a study on the influence of the availability of water on the growth of trees in a stand of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco)]. Revue Forestière Française 32(2):167–172

  5. Ballian D, Mikic T, Pintaric K (2002) Provenance trials with Douglas-fir (Pseudotsuga menziesii (Mirb) Franco) at Blinje site near Kresevo. Works of the Faculty of Forestry, University of Sarajevo 1:9–18

  6. Bansal S, Harrington CA, Gould PJ, St Clair JB (2014) Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob Change Biol 21(2):947–958

  7. Block K, Mauritsen T (2013) Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J Adv Model Earth Syst 5:676–691

  8. Bolte A, Ammer C, Löf M et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482

  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

  10. Carter KK (1996) Provenance tests as indicators of growth response to climate change in 10 north temperate tree species. Can J For Res 26:1089–1095

  11. Chakraborty D, Wang T, Andre K et al (2015) Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in Central Europe. PloS One 10:e0136357

  12. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

  13. Ducci F, Tocci A (1987) Primi risultati della sperimentazione IUFRO 1969-70 su (Pseudotsuga menziesii (Mirb.) Franco) Franco nell’appennino centro-sette [First results of IUFRO/1969-70 experimentation on (Pseudotsuga menziesii (Mirb.) Franco) in Northern and Central Apennines]. Annali dell’Istituto Sperimentale per la Selvicoltura, Arezzo 18:215–289

  14. Eckhart T, Hintsteiner W, Lair G, van Loo M, Hasenauer H (2014) The impact of soil conditons on the growth of Douglas-fir in Austria. Austrian J For Sci 131(2):107–127

  15. Eilmann B, de Vries SMG, den Ouden J et al (2013) Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. For Ecol Manag 302:133–143

  16. European Union (2000) Council Directive 1999/105/EC of 22 December 1999 on the marketing of forest reproductive material. Off J Eur Commun 11:17–40

  17. Gardner RH, Dale VH, O’Neill RV (1990) Error propagation and uncertainty in process modelling. In: Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) Process modeling of forest growth responses to environmental stress. Timber Press, Portland, pp 208–219

  18. Hallgren WS, Pitman AJ (2000) The uncertainty in simulations by a global biome model (BIOME3) to alternative parameter values. Glob Change Biol 6:483–495

  19. Hammonds JS, Hoffman FO, Bartell SM (1994) An introductory guide to uncertainty analysis in environmental and health risk assessment. US DOE, Washington, DC.

  20. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

  21. Isaac-Renton MG, Roberts DR, Hamann A, Spiecker H (2014) Douglas-fir plantations in Europe: a retrospective test of assisted migration to address climate change. Glob Change Biol 20:2607–2617

  22. Kapeller S, Lexer MJ, Geburek T et al (2012) Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For Ecol Manag 271:46–57

  23. Karasözen B (2007) Survey of trust-region derivative free optimization methods. J Ind Manag Optim 3:321–334

  24. Kenk G, Thren M (1958) Ergebnisse verschiedener Douglasien provenienzversuche in Baden-Württemberg. Teil I. Der Internationale Douglasien-Provenienzversuch 1958 [Results of different Douglas-fir provenance trials in Baden-Württemberg. Part I: The International Douglas-fir Provenance Trial 1958]. Allgemeine Forst und Jagdzeitung 155(7/8):165–184

  25. Kölling C (2008) Die Douglasie im Klimawandel: Gegenwärtige und zukünftige Anbaubedingungen in Bayern. LWF Wissen, Bavaria, Germany, pp 12–21

  26. Konnert M, Ruetz W (2006) Genetic aspects of artificial regeneration of Douglas-fir (Pseudotsuga menziesii) in Bavaria. Eur J For Res 125:261–270

  27. Konnert M, Fady B, Gömöry D, et al. (2015) Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, Italy. xvi and p 75

  28. Körkel S, Qu H, Rücker G, Sager S (2005) Derivative based vs. derivative free optimization methods for nonlinear optimum experimental design. In: Zhang W, Tong W, Chen Z, Glowinski R (eds) Current trends in high performance computing and its application: proceedings of the international conference on high Performance computing and applications, August 8-10, 2004, Shanghai, P.R. China. Springer, Berlin, pp 339–344

  29. Kranenborg KG, de Vries SM (1995) Douglas fir provenance research in the Netherlands: 1966 67 IUFRO Series. IBN Research Report, 95/1, p 27. Institute for Forestry and Nature Research, Wageningen.

  30. Lally M, Thomson D (1998) Best seed origins for Douglas-fir. Coillte Research and Development, Information note No 17, Newtownmountkennedy, Co. Wicklow

  31. Lexer MJ, Hönninger K (2004) Effects of error in model input: experiments with a forest patch model. Ecol Model 173:159–176

  32. Lindner M, Fitzgerald JB, Zimmermann NE et al (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83

  33. Loehle C (1997) A hypothesis testing framework for evaluating ecosystem model performance. Ecol Model 97:153–165

  34. Loehle C, LeBlanc D (1996) Model-based assessments of climate change effects on forests: a critical review. Ecol Model 90:1–31

  35. Lumley T (2009) Leaps: regression subset selection. R package. The Comprehensive R Archive Network, Washington

  36. Magnesen S (1986) The International Short Term Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) Provenance Experiment in West Norway, Meddelelser Fra Norsk Institutt for Skogforskning, pp 295–312

  37. Marris E (2008) Moving on assisted migration. Nat Rep Clim Change 2:112–113

  38. Matyas C (1994) Modeling climate change effects with provenance test data. Tree Physiol 14:797–804

  39. McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

  40. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

  41. Montwé D, Spiecker H, Hamann A (2015) Five decades of growth in a genetic field trial of Douglas-fir reveal trade-offs between productivity and drought tolerance. Tree Genet Genomes 11:1–11

  42. Nanson A (1978) Belgian Provenance Experiments with Douglas-fir, Grand fir and Sitka spruce. In: Proceedings of the IUFRO joint meeting of working parties, Vancouver, Canada, 1978, vol 2, 335–346. B.C. Ministry of Forests Information Services Branch, Victoria

  43. OECD (2012) Forest seed and plant scheme 2012 rules and regulations OECD scheme for the certification of forest reproductive. OECD, Paris

  44. Pearson RG, Thuiller W, Araújo MB et al (2006) Model-based uncertainty in species range prediction. J Biogeogr 33(10):1704–1711

  45. Perić S, Jazbec A, Mladen I (2005) Analysis of height and diameter breast height for Douglas-fir provenances test. In: Luzar V, Dobric VH (eds) 27th International Conference Information Technology Interfaces ITI 2005, June 20–23, Cavtat, p 4. SRCE University Computing Centre, University of Zegreb, Cavtat

  46. Perić S, Jazbec A, Tijardovi M, Margaleti J, Mladen I, Pila I, Medak J (2009) Provenance studies of Douglas-fir in the locality of Kontija (Istria). Periodicum Biologorum UDC 57:61 111(4):487–493

  47. Petkova K (2011) Investigation of Douglas-fir provenance test in North-Western Bulgaria at age 20. For Ideas 17(2):42

  48. R Core Team (2013) R Core Team. R: a language and environment for statistical computing R Foundation for statistical computing, Vienna, Austria ISBN 3–900051–07–0. http://www.R-project.org/

  49. Reyer C (2013) The cascade of uncertainty in modeling forest ecosystem responses to environmental change and the challenge of sustainable resource management. Doctoral Thesis. Mathematisch-Naturwissenschaftliche Fakultät II Humbodt Unviversität Berlin 168

  50. Rios LM, Sahinidis NV (2013) Derivative-free optimization: a review of algorithms and comparison of software implementations. J Global Optim 56:1247–1293

  51. Schlueter M, Munetomo M (2013) User guide. Technical report, Hokkaido University, Japan (HUSCAP) (2013). http://www.midacosolver.com/data/other/MIDACO_User_Guide.pdf

  52. Schober R (1955) Douglasien Provenienzversuche [Douglas-fir Provenance Trials]. Allgemeine Forst- und Jagdzeitung 125(5):160–179

  53. Sika A, Pav B (1990) Vyskovy Rust Douglasky Na Proveniencnich Plochach CR V Ruznych Fazich Vyvoje [Height Growth of Douglas Firs in Different Developmental Phases on Provenance Areas in the Czech Republic]. Lesnictvi 36:367–380

  54. Silander V, Lehtonen J, Nikkanen T (2000) Pseudotsuga Douglaskuusi. In: Silander V, Lehtonen J, Nikkanen T (eds) Ulkomaisten havupuulajien menestyminen Etela-Suomessa [Performance of exotic conifers in Southern Finland], pp 81–84. Mets¨antutkimuslaitoksen tiedonantoja, Vantaa, Mets¨antutkimuslaitos, Muhoksen Tutkimusasema.

  55. Spadavecchia L, Williams M, Law BE (2011) Uncertainty in predictions of forest carbon dynamics: separating driver error from model error. Ecol Appl: A Publ Ecol Soc Am 21:1506–1522

  56. Spittlehouse DL, Stewart RB (2003) Adaptation to climate change in forest management. BC J Ecosyst Manag 4:1–11

  57. St Clair JB, Mandel NL, Vance-Borland KW (2005) Genecol Douglas-fir in Western Oregon and Washington. Ann Bot 96:1199–1214

  58. Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077

  59. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

  60. Wang T, Hamann A, Yanchuk A et al (2006) Use of response functions in selecting lodgepole pine populations for future climates. Glob Change Biol 12:2404–2416

  61. Wang T, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20:153–163

  62. Wang T, Campbell EM, O’Neill GA, Aitken SN (2012a) Projecting future distributions of ecosystem climate niches: uncertainties and management applications. For Ecol Manag 279:128–140

  63. Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012b) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29

  64. Yang J, Pedlar JH, McKenney DW, Weersink A (2015) The development of universal response functions to facilitate climate-smart regeneration of black spruce and white pine in Ontario, Canada. For Ecol Manag 339:34–43

Download references

Acknowledgments

We would like to thank Marlene Eder (BFW, Vienna), Wolfrad Rütz, Gerhard Huber, and Manuela Heintz (ASP, Teisendorf, Germany) for helping in data compilation. We would also like to acknowledge the support of all present and former colleagues of BFW and ASP who undertook field measurement at the Douglas-fir trials. The study was funded by the Austrian climate research programme ACRP 4th Call for Proposals, Project No. B175092.

Author information

Correspondence to Silvio Schueler.

Additional information

Communicated by Arne Nothdurft.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1386 kb)

Supplementary material 2 (DOCX 58 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Wang, T., Andre, K. et al. Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty analysis of a genetically based model. Eur J Forest Res 135, 919–936 (2016). https://doi.org/10.1007/s10342-016-0984-5

Download citation

Keywords

  • Climate change
  • Douglas-fir
  • Provenance trials
  • Seed origin
  • Uncertainty