European Journal of Forest Research

, Volume 135, Issue 4, pp 743–754 | Cite as

Current and future conifer seed production in the Alps: testing weather factors as cues behind masting

  • F. Bisi
  • J. von Hardenberg
  • S. Bertolino
  • L. A. Wauters
  • S. Imperio
  • D. G. Preatoni
  • A. Provenzale
  • M. V. Mazzamuto
  • A. Martinoli
Original Paper

Abstract

Temporal patterns of masting in conifer species are intriguing phenomena that have cascading effects on different trophic levels in ecosystems. Many studies suggest that meteorological cues (changes in temperature and precipitation) affect variation in seed-crop size over years. We monitored cone crops of six conifer species in the Italian Alps (1999–2013) and analysed which seasonal weather factors affected annual variation in cone production at forest community level. Larch, Norway spruce and silver fir showed masting while temporal patterns in Pinus sp. were less pronounced. We found limited support for the temperature difference model proposed by Kelly et al. Both seasonal (mainly spring and summer) temperatures and precipitations of 1 and 2 years prior to seed maturation affected cone-crop size, with no significant effect of previous year’s cone crop. Next, we estimated future forest cone production until 2100, applying climate projection (using RCP 8.5 scenario) to the weather model that best predicted variation in measured cone crops. We found no evidence of long-term changes in average cone production over the twenty-first century, despite increase in average temperature and decrease in precipitation. The amplitude of predicted annual fluctuations in cone production varies over time, depending on study area. The opposite signs of temperature effects 1 and 2 years prior to seed set show that temperature differences are indeed a relevant cue. Hence, predicted patterns of masting followed by 1 or more years of poor-medium cone production suggest a high degree of resilience of alpine conifer forests under global warming scenario.

Keywords

Global warming Alps Conifer Forest Cones Masting 

Supplementary material

10342_2016_969_MOESM1_ESM.pdf (64 kb)
Online Resource 1Autocorrelation function estimates, in bold significant correlation (PDF 64 kb)
10342_2016_969_MOESM2_ESM.pdf (84 kb)
Online Resource 2Seed production for each area and species (PDF 84 kb)
10342_2016_969_MOESM3_ESM.pdf (103 kb)
Online Resource 3Cones prediction (PDF 102 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259:660–684CrossRefGoogle Scholar
  2. Archibald DW, McAdam AG, Boutin S, Fletcher QE, Humphries MM (2012) Within-season synchrony of a masting conifer enhances seed escape. Am Nat 179(4):536–544CrossRefPubMedGoogle Scholar
  3. ARPA Lombardia (2014) www.arpalombardia.it. Accessed 15 Dec 2015
  4. Barton K (2015) MuMIn: multi-model inference. R package version 1.13.4. http://CRAN.R-project.org/package=MuMIn. Accessed 15 Dec 2015
  5. Bates D, Maechler M, Bolker B, Walker S (2014) _lme4: Linear mixed-effects models using Eigen and S4_. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed 15 Dec 2015
  6. Boutin S, Wauters LA, McAdam AG, Humphries MM, Tosi G, Dhondt AA (2006) Anticipatory reproduction and population growth in seed predators. Science 314:1928–1930CrossRefPubMedGoogle Scholar
  7. Broome A, Hendry S, Peace A (2007) Annual and spatial variation in coning shown by the Forest Condition Monitoring programme data for Norway spruce, Sitka spruce and Scots pine in Britain. Forestry 80:17–28CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Callahan HS, Del Fierro K, Patterson AE, Zafar H (2008) Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob Change Biol 14(2):285–293CrossRefGoogle Scholar
  10. Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A (2010) Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecol Manag 259:750–761CrossRefGoogle Scholar
  11. Cavanaugh JE (1997) Unifying the derivations of the Akaike and corrected Akaike information criteria. Stat Probab Lett 31:201–208CrossRefGoogle Scholar
  12. Centro Funzionale Regionale Regione Autonoma Valle d’Aosta (2014) Assessorato opere pubbliche, difesa del suolo e edilizia residenziale pubblica - Dipartimento programmazione, difesa del suolo e risorse idriche (Department of public works, soil conservation and public housing, Department planning, soil conservation and water resources). meteo@regione.vda.itGoogle Scholar
  13. Crone EE, Rapp JM (2014) Resource depletion, pollen coupling, and the ecology of mast seeding. Ann N Y Acad Sci 1322(1):21–34CrossRefPubMedGoogle Scholar
  14. Crone EE, Mcintire EJ, Brodie J (2011) What defines mast seeding? Spatio-temporal patterns of cone production by whitebark pine. J Ecol 99:438–444Google Scholar
  15. Cutini A, Chianucci F, Chirichella R, Donaggio E, Mattioli L, Apollonio M (2013) Mast seeding in deciduous forests of the northern Apennines (Italy) and its influence on wild boar population dynamics. Ann Forest Sci 70:493–502CrossRefGoogle Scholar
  16. Dixon A, Haffield JP (2013) Seed availability and timing of breeding of Common Crossbills Loxia curvirostra at Sitka Spruce Picea sitchensis dominated forestry plantations. Ardea 101:33–38CrossRefGoogle Scholar
  17. Eis S (1973) Cone production of Douglas-fir and grand fir and its climatic requirements. Can J Forest Res 3(1):61–70CrossRefGoogle Scholar
  18. Farmer RE (1997) Ecophysiology of temperate and boreal zone forest trees. St. Lucie Press, FloridaGoogle Scholar
  19. Fletcher QE, Boutin S, Lane JE, LaMontagne JM, McAdam AG, Krebs CJ, Humphries MM (2010) The functional response of a hoarding seed predator to mast seeding. Ecology 91:2673–2683CrossRefPubMedGoogle Scholar
  20. Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage Publications, Thousand OaksGoogle Scholar
  21. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot Lond 90(4):537–544CrossRefGoogle Scholar
  22. Guarín A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. Forest Ecol Manag 218(1):229–244CrossRefGoogle Scholar
  23. Hastie TJ, Tibshirani RJ (1990) Generalized additive models, vol 43. CRC Press, Boca RatonGoogle Scholar
  24. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):1–12CrossRefGoogle Scholar
  25. Hoch G, Siegwolf RT, Keel SG, Körner C, Han Q (2013) Fruit production in three masting tree species does not rely on stored carbon reserves. Oecologia 171(3):653–662CrossRefPubMedGoogle Scholar
  26. Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3(5):457–463CrossRefGoogle Scholar
  27. IPCC AR5 WG1 (2013) Stocker TF et al. (ed) Climate Change 2013: The Physical Science Basis. Working Group 1 (WG1) Contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Cambridge University PressGoogle Scholar
  28. Isotta FA, Frei C, Weilguni V, Perec Tadi M, Lassgues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertanik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34(5):1657–1675CrossRefGoogle Scholar
  29. ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale (2010) La realizzazione in Italia del Progetto CORINE Land Cover 2006. ISPRA, Rapporti 131/2010. ISBN: 978-88-448-0477-0 (in Italian) Google Scholar
  30. Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 465–492Google Scholar
  31. Johnson AH, Friedland AJ, Dushoff JG (1986) Recent and historic red spruce mortality: Evidence of climatic influencee. Water Air Soil Poll 30(1–2):319–330CrossRefGoogle Scholar
  32. Juday GP, Barber V, Rupp S, Zasada JC, Wilming M (2003) A 200-year perspective of climate variability and the response of white spruce in interior Alaska. In: Greenland D, Goodin DG, Smith RC (eds) Climate variability and ecosystem response at long-term ecological research sites. Oxford University Press, Oxford, pp 226–250Google Scholar
  33. Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470CrossRefPubMedGoogle Scholar
  34. Kelly D, Sork VL (2002) Mast Seeding Perennial Plants: why, how where? Annu Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  35. Kelly D, Hart DE, Allen RB (2001) Evaluating the wind-pollination benefits of mast seeding. Ecology 82:117–126CrossRefGoogle Scholar
  36. Kelly D, Geldenhuis A, James A et al (2013) Of mast and mean: differential temperature cue makes mast seeding insensitive to climate change. Ecol Lett 16:90–98CrossRefPubMedGoogle Scholar
  37. Koenig WD, Knops JM (1998) Scale of mast-seeding and tree-ring growth. Nature 396(6708):225–226CrossRefGoogle Scholar
  38. Koenig WD, Knops JM (2013) Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks. Ecology 94:83–93CrossRefPubMedGoogle Scholar
  39. Krebs CJ, LaMontagne JM, Kenney AJ, Boutin S (2012) Climatic determinants of white spruce cone crops in the boreal forest of southwestern Yukon. Botany 90:113–119CrossRefGoogle Scholar
  40. LaDeau SL, Clark JS (2001) Rising CO2 levels and the fecundity of forest trees. Science 292:95–98CrossRefPubMedGoogle Scholar
  41. LaMontagne JM, Boutin S (2007) Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J Ecol 95:991–1000CrossRefGoogle Scholar
  42. Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Change Biol 19:3184–3199CrossRefGoogle Scholar
  43. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709CrossRefGoogle Scholar
  44. Lobo N, Millar JS (2011) The efficacy of conifer seeds as major food resources to deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi). Mamm Biol 76:274–284Google Scholar
  45. Lobo N, Green DJ, Millar JS (2013) Effects of seed quality and abundance on the foraging behavior of deer mice. J Mammal 94:1449–1459CrossRefGoogle Scholar
  46. Man R, Colombo S, Kayahara GJ, Duckett S, Velasquez R, Dang QL (2013) A case of extensive conifer needle browning in northwestern Ontario in 2012: winter drying or freezing damage? Forest Chron 89(5):675–680CrossRefGoogle Scholar
  47. Maslin M, Austin P (2012) Uncertainty: climate models at their limit? Nature 486(7402):183–184CrossRefPubMedGoogle Scholar
  48. Mencuccini M, Piussi A, Zanzi S (1995) Thirty years of seed production in a subalpine Norway spruce forest: patterns of temporal and spatial variation. Forest Ecol Manag 76:109–125CrossRefGoogle Scholar
  49. Pearse SI, Koenig DW, Knops MHJ (2014) Cues versus proximate drivers: testing the mechanism behind masting behaviour. Oikos 123:179–184CrossRefGoogle Scholar
  50. Pelfini M, Leonelli G, Santilli M (2006) Climatic and Environmental Influences on Mountain Pine (Pinus montana Millere) growth in the Central Italian Alps. Arct Antarct Alp Res 38:614–623CrossRefGoogle Scholar
  51. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015). _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-120. http://CRAN.R-project.org/package=nlme. Accessed 15 Dec 2015
  52. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 15 Dec 2015
  53. Rodrigues D, Wauters LA, Romeo C et al (2010) Living on the edge: can Eurasian red squirrels (Sciurus vulgaris) persist in extreme high-elevation habitats? Arct Antarct Alp Res 42:106–112CrossRefGoogle Scholar
  54. Roland CA, Schmidt JH, Johnstone JF (2014) Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174:665–677CrossRefPubMedGoogle Scholar
  55. Romeo C, Wauters LA, Preatoni D, Tosi G, Martinoli A (2010) Living on the edge: space use of Eurasian red squirrels in marginal high-elevation habitat. Acta Oecol 36:604–610CrossRefGoogle Scholar
  56. Sala A, Hopping K, McIntire EJ, Delzon S, Crone EE (2012) Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. N Phytol 196:189–199CrossRefGoogle Scholar
  57. Salmaso F, Molinari A, Di Pierro E et al (2009) Estimating and comparing food availability for tree-seed predators in typical pulsed-resource systems: Alpine conifer forests. Plant Biosyst 143:258–267CrossRefGoogle Scholar
  58. Satake A, Iwasa Y (2000) Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J Theor Biol 203(2):63–84CrossRefPubMedGoogle Scholar
  59. Selås V, Piovesan G, Adams JM, Bernabei M (2002) Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can J Forest Res 32:217–225CrossRefGoogle Scholar
  60. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456457:12–29CrossRefGoogle Scholar
  61. Thomas PA, Wein RW (1985) Water availability and the comparative emergence of four conifer species. Can J Bot 63:1740–1746Google Scholar
  62. Tranquillini W (2012) Physiological ecology of the alpine timberline: tree existence at high altitudes with special reference to the European Alps, vol 31. Springer, New YorkGoogle Scholar
  63. Vittoz P, Bodin J, Ungricht S, Burga CA, Walther GR (2008) One century of vegetation change on Isla Persa, a nunatak in the Bernina massif in the Swiss Alps. J Veg Sci 19(5):671–680CrossRefGoogle Scholar
  64. Walker X, Henry GH, McLeod K, Hofgaard A (2012) Reproduction and seedling establishment of Picea glauca across the northernmost forest-tundra region in Canada. Glob Change Biol 18:3202–3211CrossRefGoogle Scholar
  65. Wauters LA, Gurnell J, Preatoni D, Tosi G (2001) Effects of spatial variation in food availability on spacing behaviour and demography of Eurasian red squirrels. Ecography 24(5):525–538CrossRefGoogle Scholar
  66. Wauters LA, Matthysen E, Adriaensen F, Tosi G (2004) Within-sex density dependence and population dynamics of red squirrels Sciurus vulgaris. J Anim Ecol 73(1):11–25CrossRefGoogle Scholar
  67. Wauters LA, Bertolino S, Adamo M, Van Dongen S, Tosi G (2005) Food shortage disrupts social organization: the case of red squirrels in conifer forests. Evol Ecol 19:375–404CrossRefGoogle Scholar
  68. Wauters LA, Vermeulen M, Van Dongen S, Bertolino S, Molinari A, Tosi G, Matthysen E (2007) Effects of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30:51–65CrossRefGoogle Scholar
  69. Wauters LA, Githiru M, Bertolino S, Molinari A, Tosi G, Lens L (2008) Demography of alpine red squirrel populations in relation to fluctuations in seed crop size. Ecography 31:104–114CrossRefGoogle Scholar
  70. Wesołowski T, Rowiński P, Maziarz M (2015) Interannual variation in tree seed production in a primeval temperate forest: does masting prevail? Eur J For Res 134:99–112CrossRefGoogle Scholar
  71. Williams AP, Allen CD, Macalady AK et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Climate Change 3:292–297CrossRefGoogle Scholar
  72. Williams CT, Lane JE, Humphries MM, McAdam AG, Boutin S (2014) Reproductive phenology of a food-hoarding mast-seed consumer: resource-and density-dependent benefits of early breeding in red squirrels. Oecologia 174:777–788CrossRefPubMedGoogle Scholar
  73. Wood SN (2006) Generalized Additive Models: An introduction with R. Chapman & Hall/CRC, London, Boca RatonGoogle Scholar
  74. Zong C, Wauters LA, Van Dongen S et al (2010) Annual variation in predation and dispersal of Arolla pine (Pinus cembra L.) seeds by Eurasian red squirrels and other seed-eaters. Forest Ecol Manag 260:587–594CrossRefGoogle Scholar
  75. Zong C, Wauters LA, Rong K, Martinoli A, Preatoni DG, Tosi G (2012) Nutcrackers become choosy seed harvesters in a mast-crop year. Ethol Ecol Evol 24:54–61CrossRefGoogle Scholar
  76. Zong C, Mei S, Santicchia F, Wauters LA, Preatoni DG, Martinoli A (2014) Habitat effects on hoarding plasticity in the Eurasian red squirrel (Sciurus vulgaris). Hystrix 25:14–17Google Scholar
  77. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  78. Zwiers FW, Alexander LV, Hegerl GC, Knutson TR, Kossin JP, Naveau P et al (2013) Climate extremes: challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In: Asrar GR, Hurrell JW (eds) Climate science for serving society. Springer, Netherlands, pp 339–389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • F. Bisi
    • 1
  • J. von Hardenberg
    • 2
  • S. Bertolino
    • 3
  • L. A. Wauters
    • 1
    • 4
  • S. Imperio
    • 2
  • D. G. Preatoni
    • 1
  • A. Provenzale
    • 5
  • M. V. Mazzamuto
    • 1
  • A. Martinoli
    • 1
  1. 1.Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied SciencesInsubria UniversityVareseItaly
  2. 2.Institute of Atmospheric Sciences and Climate, CNRTurinItaly
  3. 3.Department of Agriculture, Forest and Food SciencesUniversity of TurinGrugliasco, TurinItaly
  4. 4.Evolutionary Ecology Group, Department of BiologyUniversity of AntwerpAntwerpBelgium
  5. 5.Institute of Geosciences and Earth Resources, CNRPisaItaly

Personalised recommendations