European Journal of Forest Research

, Volume 135, Issue 4, pp 607–619 | Cite as

Optimal management of Pinus pinea stands when cone and timber production are considered

  • M. Pasalodos-TatoEmail author
  • T. Pukkala
  • R. Calama
  • I. Cañellas
  • M. Sánchez-González
Original Paper


Pinus pinea is one of the most important tree species in the Mediterranean region due to the economic value of its edible seeds called “piñones”. Timber also represents an important source of income from this species. Generally, P. pinea stands have been managed to maximize either timber or seed production, optimization of the joint production of both products being rare. The difficulty in optimizing seed or joint production is the highly stochastic masting habit of P. pinea. The aim of the present study was to find the optimal management of P. pinea stands from the economic point of view when both seed and timber production are considered. A growth and yield model was employed to simulate the dynamics of P. pinea stands of the northern Iberian Peninsula. The novelty of the study is the implementation of a cone yield model that is able to predict expected cone harvests and seed yields when masting is stochastic. The model was linked with an optimization algorithm to obtain optimal schedules for two different stands. The results showed that seed production of P. pinea in the northern plateau of the Iberian Peninsula may increase the soil expectation value by more than 300 % in dense stands and 200 % in sparse stands. When seed yields were considered, rotation lengths were longer and thinnings were delayed. The results were highly sensitive to cone prices and discount rates.


Edible seeds Masting NWFP Piñones Stochastic optimization 



The present investigation was financially supported by a short-term scientific mission under COST-FP0603 and the projects “STARTREE: Multipurpose trees and non-wood forest products a challenge and opportunity” (FP7-KBBE-2012-6) funded by the European Union’s Seventh Programme for research, technological development and demonstration under Grant Agreement No. 311919, AGL2010-15521 funded by the Spanish Ministry of Economy and Competitiveness and RTA2013-00011-c2.1 funded by INIA. Authors wish to thank to Servicio Territorial de Medio Ambiente de Valladolid for permission and support to maintain all the field trials involved in this study.


  1. Amidon EL (1984) Notes: a general taper functional form to predict bole volume for five mixed-conifer species in California. For Sci 30(1):166–171Google Scholar
  2. Arias-Rodil M, Pukkala T, González-González JM, Barrio Anta M, Diéguez-Aranda U (2015) Use of depth-first search and direct search methods to optimize even-aged stand management: a case study involving maritime pine in Asturias (NW Spain). Can J For Res 45:1269–1279CrossRefGoogle Scholar
  3. Calama R, Montero G (2004) Interregional non-linear height-diameter model with random coefficients for Stone Pine in Spain. Can J For Res 34:150–163CrossRefGoogle Scholar
  4. Calama R, Montero G (2005) Multilevel linear mixed model for tree diameter increment in Stone pine (Pinus pinea L.): a calibrating approach. Silva Fenn 39(1):37–54CrossRefGoogle Scholar
  5. Calama R, Montero G (2006) Stand and tree-level variability on stem form and tree volume in Pinus pinea L.: a multilevel random components approach. For Syst 15(1):24–41Google Scholar
  6. Calama R, Cañadas N, Montero G (2003) Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain. Ann For Sci 60:259–269CrossRefGoogle Scholar
  7. Calama R, Gordo FJ, Mutke S, Montero G (2008) An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain). For Ecol Manag 255(3–4):660–673CrossRefGoogle Scholar
  8. Calama R, Mutke S, Tomé JA, Gordo FJ, Montero G, Tomé M (2011) Modelling spatial and temporal variability in a zero-inflated variable: the case of stone pine (Pinus pinea L.) cone production. Ecol Model 222:606–618CrossRefGoogle Scholar
  9. Cao T, Valsta L, Mäkelä A (2010) A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. For Ecol Manag 260(10):1726–1734CrossRefGoogle Scholar
  10. Cao T, Hyytiäinen K, Hurttala H, Valsta L, Vanclay JK (2015) An integrated assessment approach to optimal forest bioenergy production for young Scots pine stands. For Ecosyst 2(1):1–10CrossRefGoogle Scholar
  11. de-Miguel S, Pukkala T, Yeşil A (2014) Integrating pine honeydew honey production into forest management optimization. Eur J For Res 133(3):423–432CrossRefGoogle Scholar
  12. Garcia-Gonzalo J, Pukkala T, Borges J (2014) Integrating fire risk in stand management scheduling. An application to Maritime pine stands in Portugal. Ann Oper Res 219(1):379–395CrossRefGoogle Scholar
  13. García-Güemes C, Montero G (1998) Influencia de ciertas variables selvícolas en la pudrición provocada por Phellinus pini sobre Pinus pinea L. Invest Agr Sist Rec For 7:203–218Google Scholar
  14. García-Güemes C, Cañadas N, Montero G (2002) Modelización de la distribución diamétrica de las masas de Pinus pinea L. de Valladolid mediante la función Weibull. Invest Agr Sist Rec For 11:262–282Google Scholar
  15. Gordo Alonso J (2004) Selección de grandes productores de frutos de Pinus pinea L. en la Meseta Norte. Tesis doctoral ETS Ingenieros de Montes, UPM. MadridGoogle Scholar
  16. Hooke R, Jeeves TA (1961) “Direct Search” solution of numerical and statistical problems. J ACM 8:212–229CrossRefGoogle Scholar
  17. Hyytiäinen K (2003) Integrating economics and ecology in stand-level timber production. Finnish Forest Research Institute, Research Papers 908Google Scholar
  18. Miina J (1998) Preparation of management models using simulation and optimisation. In: Pukkala T, Eerikäinen K (eds) Tree seedling production and management of plantation forests, pp 165–180 (University of Joensuu, Faculty of Forestry. Research notes 68)Google Scholar
  19. Miina J, Pukkala T, Hotanen J-P, Salo K (2010) Optimizing the joint production of timber and bilberries. For Ecol Manag 259:2065–2071CrossRefGoogle Scholar
  20. Montero G, Candela JA (1998) Manual de claras para repoblaciones de Pinus pinea L. EGMASA, Sevilla (Spain). 48 p (in Spanish)Google Scholar
  21. Montero G, Calama R, Ruiz-Peinado R (2008) Selvicultura de Pinus pinea L. In: Serrada R, Montero G, Reque JA (eds). Compendio de Selvicultura Aplicada en España. INIA-Ministerio de Educación y Ciencia. Madrid, Spain 1178 pp (in Spanish)Google Scholar
  22. Moreno-Fernández D, Cañellas I, Calama R, Gordo J, Sánchez-González M (2013) Thinning increases cone production of stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain). Ann For Sci 70(8):761–768CrossRefGoogle Scholar
  23. Muchiri MN, Pukkala T, Miina J (2002) Optimising the management of maize—Grevillea robusta fields in Kenya. Agrofor Syst 56(1):13–25CrossRefGoogle Scholar
  24. Ovando P, Campos P, Calama R, Montero G (2010) Landowner net benefit from Stone pine (Pinus pinea L.) afforestation of dry-land cereal fields in Valladolid, Spain. J For Econ 16(2):83–100Google Scholar
  25. Palahí M, Pukkala T, Bonet JA, Colinas C, Fischer CR, Martínez de Aragón J (2009) Effect of the inclusion of mushroom values on the optimal management of even-aged pine stands of Catalonia. For Sci 55(6):503–511Google Scholar
  26. Pasalodos-Tato M (2010) Optimising forest stand management in Galicia (north-western Spain) Dissertationes Forestales 102, The Finish Society of Forest Science, Helsinki, FinlandGoogle Scholar
  27. Pasalodos-Tato M, Pukkala T, Rigueiro-Rodríguez A, Fernández Núñez E, Mosquera Losada MR (2009) Optimal management of Pinus radiata silvopastoral systems established on abandoned agricultural land in Galicia (north-western Spain). Silva Fenn 43(5):831–844CrossRefGoogle Scholar
  28. Pasanen K (1998) Integrating variation in tree growth into forest planning. Silva Fenn 32(1):11–25CrossRefGoogle Scholar
  29. Pereira S, Prieto A, Calama R, Díaz-Balteiro L (2015) Optimal management in Pinus pinea L. stands combining silvicultural schedules for timber and cone production. Silva Fenn 49(3):1226. doi: 10.14214/sf.1226 CrossRefGoogle Scholar
  30. Pohjola J, Valsta L (2007) Carbon credits and management of Scots pine and Norway spruce stands in Finland. For Policy Econ 9(7):789–798CrossRefGoogle Scholar
  31. Pukkala T (2009) Population-based methods in the optimization of stand management. Silva Fenn 43(2):261–274CrossRefGoogle Scholar
  32. Pukkala T (2011) Optimizing forest management in Finland with carbon subsidies and taxes. For Policy Econ 13(6):425–434CrossRefGoogle Scholar
  33. Pukkala T, Miina J (1997) A method for stochastic multi-objective optimization of stand management. For Ecol Manag 98(2):189–203CrossRefGoogle Scholar
  34. Pukkala T, Lähde E, Laiho O, Salo K, Hotanen JP (2011) A multifunctional comparison of even-aged and uneven-aged forest management in a boreal region. Can J For Res 41(4):851–862CrossRefGoogle Scholar
  35. Ruiz-Peinado R, del Rio M, Montero G (2011) New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20(1):176–188Google Scholar
  36. Wets RJ (1989) The aggregation principle in scenario analysis and stochastic optimization. In: Wallace SW (ed) Algorithms and model formulations in mathematical programming. Springer, Berlin, pp 91–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Pasalodos-Tato
    • 1
    Email author
  • T. Pukkala
    • 2
  • R. Calama
    • 1
  • I. Cañellas
    • 1
  • M. Sánchez-González
    • 1
  1. 1.Centro de Investigación Forestal (CIFOR)INIAMadridSpain
  2. 2.University of Eastern FinlandJoensuuFinland

Personalised recommendations