European Journal of Forest Research

, Volume 135, Issue 2, pp 403–416 | Cite as

Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain

  • Assu Gil-Tena
  • Núria Aquilué
  • Andrea Duane
  • Miquel De Cáceres
  • Lluís Brotons
Original Paper

Abstract

Afforestation after land abandonment and the occurrence of large fires have significantly altered the composition of pine-oak ecosystems in the Mediterranean since 1950s, the latter favouring the prevalence of oak forests and shrublands to that of pine forests. Nevertheless, our ability to integrate the processes driving these changes in modelling tools and to project them under future global change scenarios is scarce. This study aims at investigating how Mediterranean forest landscape composition and seral stages may be affected by mid-term changes in fire regime and climate. Taking Catalonia (NE Spain) as study area, we predicted yearly changes in forest landscape composition using the MEDFIRE model which allows assessing the effects of different fire regimes on landscape dynamics such as post-fire regeneration and afforestation. We considered three climatic treatments based on observed and projected climate, two fire regimes largely differing in the amount of area burnt and the number of large fires, and two fire suppression strategies. While projected afforestation continued to increase forest cover in the 2050 horizon, a climate-related harsher fire regime (higher amounts of area burnt) accelerated a shift towards landscapes progressively dominated by oaks and shrublands, thus precluding general forest maturation. Fire-sensitive pine species contributed to net forest cover loss in the worst scenarios. An active fire suppression strategy partially compensated the effects of a climate-related harsher fire regime on pine forest loss and rejuvenation, whereas variability in climate projections weakly affected spatial fire allocation and afforestation. Our results highlight the need to explicitly incorporate fire suppression strategies in forest landscape composition forecasts in the Mediterranean. At mid-term, large-scale afforestation, post-fire forest rejuvenation and landscape composition changes may alter forest ecosystem functioning and potentially interact with fire suppression planning.

Keywords

Afforestation Firefighting Ignition probability IPCC-SRES scenarios Mediterranean forests Post-fire regeneration 

Supplementary material

10342_2016_943_MOESM1_ESM.docx (464 kb)
Supplementary material 1 (DOCX 463 kb)
10342_2016_943_MOESM2_ESM.docx (451 kb)
Supplementary material 2 (DOCX 450 kb)

References

  1. Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641Google Scholar
  2. Anderson HE (1982) Aids to determining fuel models for estimating fire behavior. General Technical Report INT-122. Intermountain Forest and Range Experiment Station Ogden. USDA Forest ServiceGoogle Scholar
  3. Barros A, Pereira J (2014) Wildfire selectivity for land cover type: Does size matter? PLoS ONE 9:e84760CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2009) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  5. Bielsa I, Pons X, Bunce B (2005) Agricultural abandonment in the North Eastern Iberian Peninsula: the use of basic landscape metrics to support planning. J Environ Plan Manag 48:85–102CrossRefGoogle Scholar
  6. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, OxfordGoogle Scholar
  7. Broncano MJ, Retana J, Rodrigo A (2005) Predicting the recovery of Pinus halepensis and Quercus ilex forests after a large wildfire in northeastern Spain. Plant Ecol 180:47–56CrossRefGoogle Scholar
  8. Brotons L, Aquilué N, de Cáceres M et al (2013) How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 8:e62392CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carnicer J, Coll M, Pons X et al (2014) Large-scale recruitment limitation in Mediterranean pines: the role of Quercus ilex and forest successional advance as key regional drivers. Glob Ecol Biogeogr 23:371–384CrossRefGoogle Scholar
  10. Costa P, Castellnou M, Larrañaga A et al (2011) La prevenció dels grans incendis forestals adaptada a l’Incendi Tipus. Unitat Tècnica del GRAF (ed), Divisió de Grups Operatius Especials, Direcció General de Prevenció, Extinció d’Incendis i Salvaments, Departament d’Interior, Generalitat de CatalunyaGoogle Scholar
  11. De Cáceres M, Brotons L, Aquilué N, Fortin M-J (2013) The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–1547CrossRefGoogle Scholar
  12. Debussche M, Lepart J, Dervieux A (1999) Mediterranean landscape changes: evidence from old postcards. Glob Ecol Biogeogr 8:3–15CrossRefGoogle Scholar
  13. Duane A, Piqué M, Castellnou M, Brotons L (2015) Predictive modeling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int J Wildl Fire 24:407–418CrossRefGoogle Scholar
  14. Fernandes P (2009) Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann For Sci 66:1–9CrossRefGoogle Scholar
  15. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403CrossRefGoogle Scholar
  16. Fried JS, Gilless JK, Riley WJ et al (2007) Predicting the effect of climate change on wildfire behavior and initial attack success. Clim Change 87:S251–S264CrossRefGoogle Scholar
  17. IPCC (2000) Summary for Policymakers: Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  18. Keenan T, Maria Serra J, Lloret F et al (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob Chang Biol 17:565–579CrossRefGoogle Scholar
  19. Lloret F, Calvo E, Pons X, Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17:745–759CrossRefGoogle Scholar
  20. Lloret F, Pausas JG, Vila M (2003) Responses of Mediterranean plant species to different fire frequencies in Garraf Natural Park (Catalonia, Spain): field observations and modelling predictions. Plant Ecol 167:223–235CrossRefGoogle Scholar
  21. Loepfe L, Martinez-Vilalta J, Piñol J (2012) Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Change 115:693–707CrossRefGoogle Scholar
  22. Montserrat Aguadé D (1998) Situaciones sinópticas relacionadas con el inicio de grandes forestales en Cataluña. Nimbus 1–2:93–112Google Scholar
  23. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB (2014) Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22CrossRefGoogle Scholar
  24. Moriondo M, Good P, Durao R et al (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95CrossRefGoogle Scholar
  25. Moritz MA, Parisien M-A, Batllori E et al (2012) Climate change and disruptions to global fire activity. Ecosphere 3:art49CrossRefGoogle Scholar
  26. Moya D, Alfaro-Sánchez R, López-Serrano F et al (2014) Post-fire management of Mediterranean forests: Carbon storage in regenerated areas in eastern Iberian peninsula. Cuad Investig Geográfica 40:371–386CrossRefGoogle Scholar
  27. Pausas JG (2006) Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes. Plant Ecol 187:249–259CrossRefGoogle Scholar
  28. Pausas JG, Fernández-Muñoz S (2011) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226CrossRefGoogle Scholar
  29. Pausas JG, Paula S (2012) Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Glob Ecol Biogeogr 21:1074–1082CrossRefGoogle Scholar
  30. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357CrossRefGoogle Scholar
  31. Piqué M, Valor T, Castellnou M, et al (2011a) Integració del risc de grans incendis forestals (GIF) en la gestió forestal: Incendis tipus i vulnerabilitat de les estructures forestals al foc de capçades. Sèrie: Orientacions de gestió forestal sostenible per a Catalunya (ORGEST). Centre de la Propietat Forestal. Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, Generalitat de CatalunyaGoogle Scholar
  32. Piqué M, Vericat P, Cervera T, et al (2011b) Tipologies forestals arbrades. Sèrie: Orientacions de gestió forestal sostenible per a Catalunya (ORGEST). Centre de la Propietat Forestal. Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, Generalitat de CatalunyaGoogle Scholar
  33. Podur J, Wotton M (2010) Will climate change overwhelm fire management capacity? Ecol Modell 221:1301–1309CrossRefGoogle Scholar
  34. Puerta-Piñero C, Espelta JM, Sánchez-Humanes B et al (2012) History matters: previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. For Ecol Manage 279:121–127CrossRefGoogle Scholar
  35. Regos A, Aquilué N, Retana J et al (2014) Using unplanned fires to help suppressing future large fires in mediterranean forests. PLoS ONE 9:e94906CrossRefPubMedPubMedCentralGoogle Scholar
  36. Retana J, Espelta JM, Habrouk A et al (2002) Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9:89–97Google Scholar
  37. Rocca ME, Brown PM, MacDonald LH, Carrico CM (2014) Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. For Ecol Manage 327:290–305CrossRefGoogle Scholar
  38. Rodrigo A, Retana J, Picó FX (2004) Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–729CrossRefGoogle Scholar
  39. Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS et al (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176CrossRefGoogle Scholar
  40. Sheffer E (2012) A review of the development of Mediterranean pine–oak ecosystems after land abandonment and afforestation: are they novel ecosystems? Ann For Sci 69:429–443CrossRefGoogle Scholar
  41. Stephens SL, Agee JK, Fulé PZ et al (2013) Managing forests and fire in changing climates. Science 342:41–42CrossRefPubMedGoogle Scholar
  42. Vega-García C, Chuvieco E (2006) Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landsc Ecol 21:595–605CrossRefGoogle Scholar
  43. Verburg PH, van Berkel DB, van Doorn AM et al (2010) Trajectories of land use change in Europe: a model-based exploration of rural futures. Landsc Ecol 25:217–232CrossRefGoogle Scholar
  44. Zavala MA, Espelta JM, Retana J (2000) Constraints and trade-offs in Mediterranean plant communities: the case of holm oak-Aleppo pine forests. Bot Rev 66:119–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Assu Gil-Tena
    • 1
  • Núria Aquilué
    • 1
    • 2
  • Andrea Duane
    • 1
  • Miquel De Cáceres
    • 1
    • 3
  • Lluís Brotons
    • 1
    • 3
    • 4
  1. 1.InForest Joint Research UnitCEMFOR – CTFCSolsonaSpain
  2. 2.Centre d’Étude de la ForêtUniversité du Québec à MontréalMontrealCanada
  3. 3.CREAFCerdanyola del VallésSpain
  4. 4.CSICCerdanyola del VallésSpain

Personalised recommendations