European Journal of Forest Research

, Volume 135, Issue 2, pp 313–329

Species-specific and generic biomass equations for seedlings and saplings of European tree species

  • Peter Annighöfer
  • Aitor Ameztegui
  • Christian Ammer
  • Philippe Balandier
  • Norbert Bartsch
  • Andreas Bolte
  • Lluís Coll
  • Catherine Collet
  • Jörg Ewald
  • Nico Frischbier
  • Tsegay Gebereyesus
  • Josephine Haase
  • Tobias Hamm
  • Bastian Hirschfelder
  • Franka Huth
  • Gerald Kändler
  • Anja Kahl
  • Heike Kawaletz
  • Christian Kuehne
  • André Lacointe
  • Na Lin
  • Magnus Löf
  • Philippe Malagoli
  • André Marquier
  • Sandra Müller
  • Susanne Promberger
  • Damien Provendier
  • Heinz Röhle
  • Jate Sathornkich
  • Peter Schall
  • Michael Scherer-Lorenzen
  • Jens Schröder
  • Carolin Seele
  • Johannes Weidig
  • Christian Wirth
  • Heino Wolf
  • Jörg Wollmerstädt
  • Martina Mund
OriginalPaper

DOI: 10.1007/s10342-016-0937-z

Cite this article as:
Annighöfer, P., Ameztegui, A., Ammer, C. et al. Eur J Forest Res (2016) 135: 313. doi:10.1007/s10342-016-0937-z

Abstract

Biomass equations are a helpful tool to estimate the tree and stand biomass production and standing stock. Such estimations are of great interest for science but also of great importance for global reports on the carbon cycle and the global climate system. Even though there are various collections and generic meta-analyses available with biomass equations for mature trees, reports on biomass equations for juvenile trees (seedlings and saplings) are mainly missing. Against the background of an increasing amount of reforestation and afforestation projects and forests in young successional stages, such equations are required. In this study we have collected data from various studies on the aboveground woody biomass of 19 common tree species growing in Europe. The aim of this paper was to calculate species-specific biomass equations for the aboveground woody biomass of single trees in dependence of root-collar-diameter (RCD), height (H) and the combination of the two (RCD2 H). Next to calculating species-specific biomass equations for the species available in the dataset, we also calculated generic biomass equations for all broadleaved species and all conifer species. The biomass equations should be a contribution to the pool of published biomass equations, whereas the novelty is here that the equations were exclusively derived for young trees.

Keywords

Juvenile tree biomass Allometric equations Forest regeneration 

Funding information

Funder NameGrant NumberFunding Note
FKZ 3511 84 0200

    Copyright information

    © Springer-Verlag Berlin Heidelberg 2016

    Authors and Affiliations

    • Peter Annighöfer
      • 1
    • Aitor Ameztegui
      • 2
    • Christian Ammer
      • 1
    • Philippe Balandier
      • 3
    • Norbert Bartsch
      • 1
    • Andreas Bolte
      • 4
    • Lluís Coll
      • 2
    • Catherine Collet
      • 5
    • Jörg Ewald
      • 6
    • Nico Frischbier
      • 7
    • Tsegay Gebereyesus
      • 1
    • Josephine Haase
      • 8
    • Tobias Hamm
      • 9
    • Bastian Hirschfelder
      • 9
    • Franka Huth
      • 9
    • Gerald Kändler
      • 10
    • Anja Kahl
      • 11
    • Heike Kawaletz
      • 12
    • Christian Kuehne
      • 13
    • André Lacointe
      • 14
    • Na Lin
      • 15
    • Magnus Löf
      • 16
    • Philippe Malagoli
      • 17
    • André Marquier
      • 14
    • Sandra Müller
      • 18
    • Susanne Promberger
      • 19
    • Damien Provendier
      • 20
    • Heinz Röhle
      • 21
    • Jate Sathornkich
      • 22
    • Peter Schall
      • 1
    • Michael Scherer-Lorenzen
      • 18
    • Jens Schröder
      • 23
    • Carolin Seele
      • 11
    • Johannes Weidig
      • 9
    • Christian Wirth
      • 11
    • Heino Wolf
      • 24
    • Jörg Wollmerstädt
      • 9
    • Martina Mund
      • 1
    1. 1.Department of Silviculture and Forest Ecology of the Temperate ZonesUniversity of GöttingenGöttingenGermany
    2. 2.Forest Sciences Centre of Catalonia (CEMFOR-CTFC)SolsonaSpain
    3. 3.IrsteaU.R. Forest Ecosystems (EFNO)Nogent-sur-VernissonFrance
    4. 4.Thünen Institute of Forest EcosystemsEberswaldeGermany
    5. 5.LERFoB, UMR 1092INRA-AgroParisTechChampenouxFrance
    6. 6.Botany and Vegetation ScienceUniversity of Applied Science Weihenstephan-TriesdorfFreisingGermany
    7. 7.Thüringen ForstForestry Research and Competence CentreGothaGermany
    8. 8.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
    9. 9.Institute of Silviculture and Forest ProtectionUniversity of Technology DresdenTharandtGermany
    10. 10.Department for Biometry and InformaticsFVA Baden-WürttembergFreiburgGermany
    11. 11.Systematic Botany and Functional BiodiversityUniversity of LeipzigLeipzigGermany
    12. 12.DBU Naturerbe GmbHOsnabrückGermany
    13. 13.School of Forest ResourcesUniversity of MaineOronoUSA
    14. 14.UMR547 PIAFINRAClermont-FerrandFrance
    15. 15.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouChina
    16. 16.Southern Swedish Forest Research CentreSwedish University of Agricultural ScienceAlnarpSweden
    17. 17.UMR547 PIAFClermont University, University Blaise PascalClermont-FerrandFrance
    18. 18.Faculty of Biology, GeobotanyUniversity of FreiburgFreiburgGermany
    19. 19.Bavarian State Institute of ForestryFreisingGermany
    20. 20.Plante and CitéAngers Cedex 1France
    21. 21.Institute for Forest Growth and BiometricsTechnical University DresdenTharandtGermany
    22. 22.Department of Horticulture, Faculty of AgricultureKasetsart UniversityBangkokThailand
    23. 23.Faculty of Forest and EnvironmentEberswalde University for Sustainable DevelopmentEberswaldeGermany
    24. 24.Department for Forest Genetics and Forest Tree BreedingStaatsbetrieb SachsenforstPirnaGermany

    Personalised recommendations