European Journal of Forest Research

, Volume 135, Issue 2, pp 313–329 | Cite as

Species-specific and generic biomass equations for seedlings and saplings of European tree species

  • Peter Annighöfer
  • Aitor Ameztegui
  • Christian Ammer
  • Philippe Balandier
  • Norbert Bartsch
  • Andreas Bolte
  • Lluís Coll
  • Catherine Collet
  • Jörg Ewald
  • Nico Frischbier
  • Tsegay Gebereyesus
  • Josephine Haase
  • Tobias Hamm
  • Bastian Hirschfelder
  • Franka Huth
  • Gerald Kändler
  • Anja Kahl
  • Heike Kawaletz
  • Christian Kuehne
  • André Lacointe
  • Na Lin
  • Magnus Löf
  • Philippe Malagoli
  • André Marquier
  • Sandra Müller
  • Susanne Promberger
  • Damien Provendier
  • Heinz Röhle
  • Jate Sathornkich
  • Peter Schall
  • Michael Scherer-Lorenzen
  • Jens Schröder
  • Carolin Seele
  • Johannes Weidig
  • Christian Wirth
  • Heino Wolf
  • Jörg Wollmerstädt
  • Martina Mund
OriginalPaper

Abstract

Biomass equations are a helpful tool to estimate the tree and stand biomass production and standing stock. Such estimations are of great interest for science but also of great importance for global reports on the carbon cycle and the global climate system. Even though there are various collections and generic meta-analyses available with biomass equations for mature trees, reports on biomass equations for juvenile trees (seedlings and saplings) are mainly missing. Against the background of an increasing amount of reforestation and afforestation projects and forests in young successional stages, such equations are required. In this study we have collected data from various studies on the aboveground woody biomass of 19 common tree species growing in Europe. The aim of this paper was to calculate species-specific biomass equations for the aboveground woody biomass of single trees in dependence of root-collar-diameter (RCD), height (H) and the combination of the two (RCD2 H). Next to calculating species-specific biomass equations for the species available in the dataset, we also calculated generic biomass equations for all broadleaved species and all conifer species. The biomass equations should be a contribution to the pool of published biomass equations, whereas the novelty is here that the equations were exclusively derived for young trees.

Keywords

Juvenile tree biomass Allometric equations Forest regeneration 

References

  1. Alemdag IS, Stiell WM (1982) Spacing and age effects on biomass production in red pine plantations. For Chron 58:220–224CrossRefGoogle Scholar
  2. Annighöfer P, Mölder I, Zerbe S, Kawaletz H, Terwei A, Ammer C (2012) Biomass functions for the two alien tree species Prunus serotina Ehrh. and Robinia pseudoacacia L. in floodplain forests of Northern Italy. Eur J Forest Res 131:1619–1635CrossRefGoogle Scholar
  3. António N, Tomé M, Tomé J, Soares P, Fontes L (2007) Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can J For Res 37:895–906CrossRefGoogle Scholar
  4. Anzola-Jürgenson GA (2002) Linking structural and process-oriented models of plant growth. Dissertation, GöttingenGoogle Scholar
  5. Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann For Sci 54:39–50CrossRefGoogle Scholar
  6. Baskerville GL (1972) Use of logarithmic regression in the estimation of plant biomass. Can J For Res 2:49–53CrossRefGoogle Scholar
  7. Bates DM, Chambers JM (1992) Nonlinear models. In: Chambers JM, Hastie TJ (eds) Statistical models, vol 10. S. Wadsworth & Brooks, colo, Pacific GroveGoogle Scholar
  8. Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications: wiley series in probability and statistics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  9. Baty F, Delignette-Muller M (2015) Tools for Nonlinear Regression Analysis: Package ‘nlstools’. https://cran.r-project.org/web/packages/nlstools/nlstools.pdf, 21 Oct 2015
  10. Beauchamp JJ, Olson JS (1973) Corrections for bias in regression estimates after logarithmic transformation. Ecology 54:1403–1407CrossRefGoogle Scholar
  11. Berner LT, Alexander HD, Loranty MM, Ganzlin P, Mack MC, Davydov SP et al (2015) Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. For Ecol Manage 337:110–118CrossRefGoogle Scholar
  12. Bi H, Murphy S, Volkova L, Weston C, Fairman T, Li Y et al (2015) Additive biomass equations based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. For Ecol Manage 349:106–121CrossRefGoogle Scholar
  13. Bjarnadottir B, Inghammar A-C, Brinker M-M, Sigurdsson BD (2007) Single tree biomass and volume functions for young Siberian larch trees (Larix sibirica) in eastern Iceland. Icel Agric Sci 20:125–135Google Scholar
  14. Bolte A, Czajkowski T, Bielefeldt J, Wolff B, Heinrichs S (2009) Schätzung der oberirdischen Biomassevorräte des Baum- und Strauchunterwuchses in Wäldern auf der Basis von Vegetationsaufnahmen. Forstarchiv 80Google Scholar
  15. Brown JK (1976) Estimating shrub biomass from basal stem diameters. Can J For Res 6:153–158CrossRefGoogle Scholar
  16. Brown S (1997) Estimating biomass and biomass change of tropical forests: a primer: a forest resources assessment publication. FAO—Food and Agriculture Organization of the United Nations, Rome. FAO Forestry Paper 134Google Scholar
  17. Brown S (2002) Measuring carbon in forests: current status and future challenges. Environ Pollut 116:363–372CrossRefPubMedGoogle Scholar
  18. Buech RR, Rugg DJ (1989) Biomass relations of shrub components and their generality. For Ecol Manage 26:257–264CrossRefGoogle Scholar
  19. Carroll RJ, Ruppert D (1988) Transformation and weighting in regression: monographs on statistics and applied probability. Chapman and Hall, LondonCrossRefGoogle Scholar
  20. Chambers JM (1992) Linear models. Chapter 4. In: Chambers JM, Hastie TJ (eds) Statistical models. S. Wadsworth & Brooks, Cole, Pacific GroveGoogle Scholar
  21. Chave J, Riera B, Dubois MA (2001) Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. J Trop Ecol 17:79–96CrossRefGoogle Scholar
  22. Chroust L (1985) Above ground biomass of young pine forest (Pinus sylvestris) and its determination. Communicationes Instituti Forestalis Cechosloveniae 14:127–145Google Scholar
  23. Cienciala E, Apltauer J, Exnerová Z, Tatarinov FA (2008) Biomass functions applicable to oak trees grown in Central-European forestry. J For Sci 54:109–120Google Scholar
  24. Cifuentes Jara M, Henry M, Réjou Méchain M, Lopez OR, Wayson C, Fuentes Michel, María José et al (2015a) Overcoming obstacles to sharing data on tree allometric equations. Ann For Sci 72:789–794CrossRefGoogle Scholar
  25. Cifuentes Jara M, Henry M, Réjou-Méchain M, Wayson C, Zapata-Cuartas M, Piotto D et al (2015b) Guidelines for documenting and reporting tree allometric equations. Ann For Sci 72:763–768CrossRefGoogle Scholar
  26. Cleveland WS, Grosse E, Shyu WM (1992) Local regression models. Chapter 8. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Wadsworth & Brooks, Cole: Pacific GroveGoogle Scholar
  27. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190CrossRefPubMedGoogle Scholar
  28. Djomo AN, Ibrahima A, Saborowski J, Gravenhorst G (2010) Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For Ecol Manage 260:1873–1885CrossRefGoogle Scholar
  29. Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660CrossRefPubMedGoogle Scholar
  30. Falster DS, Duursma RA, Ishihara MI, Barneche DR, FitzJohn RG, Vårhammar A et al (2015) BAAD: a biomass and allometry database for woody plants. Ecology 96:1445CrossRefGoogle Scholar
  31. Galik CS, Mobley ML, Richter D (2009) A virtual “field test” of forest management carbon offset protocols: the influence of accounting. Mitig Adapt Strat Glob Change 14:677–690Google Scholar
  32. Gonzalez-Benecke CA, Gezan SA, Albaugh TJ, Allen HL, Burkhart HE, Fox TR et al (2014a) Local and general above-stump biomass functions for loblolly pine and slash pine trees. For Ecol Manage 334:254–276CrossRefGoogle Scholar
  33. Gonzalez-Benecke CA, Gezan SA, Martin TA, Cropper WP, Samuelson LJ, Leduc DJ (2014b) Individual tree diameter, height, and volume functions for longleaf pine. For Sci 60:43–56Google Scholar
  34. Heinrichs S, Bernhardt-Römermann M, Schmidt W (2010) The estimation of aboveground biomass and nutrient pools of understorey plants in closed Norway spruce forests and on clearcuts. Eur J For Res 129:613–624CrossRefGoogle Scholar
  35. Huang S, Titus SJ, Wiens DP (1992) Comparison of nonlinear height–diameter functions for major Alberta tree species. Can J For Res 22:1297–1304CrossRefGoogle Scholar
  36. IPCC (2013) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  37. Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-scale biomass estimators for United States tree species. For Sci 49:12–35Google Scholar
  38. Kaitaniemi P (2004) Testing the allometric scaling laws. J Theor Biol 228:149–153CrossRefPubMedGoogle Scholar
  39. Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209CrossRefGoogle Scholar
  40. Madgwick HA, Satoo T (1975) On estimating the aboveground weights of tree stands. Ecology 56:1446–1450CrossRefGoogle Scholar
  41. Nelson BW, Mesquita R, Pereira JL, Aquino Garcia, de Souza Silas, Teixeira Batista G, Bovino Couto L (1999) Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. For Ecol Manage 117:149–167CrossRefGoogle Scholar
  42. Norgren O, Elfving B, Olsson O (1995) Non-destructive biomass estimation of tree seedlings using image analysis. Scand J For Res 10:347–352CrossRefGoogle Scholar
  43. Ott RL (1993) An introduction to statistical methods and data analysis. Duxbury press, CaliforniaGoogle Scholar
  44. Pajtík J, Konôpka B, Lukac M (2008) Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. For Ecol Manage 256:1096–1103CrossRefGoogle Scholar
  45. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45:573–593Google Scholar
  46. Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878CrossRefGoogle Scholar
  47. Pilli R, Anfodillo T, Carrer M (2006) Towards a functional and simplified allometry for estimating forest biomass. For Ecol Manage 237:583–593CrossRefGoogle Scholar
  48. R Development Core Team (2013) R: a language and environment for statistical computingGoogle Scholar
  49. Repola J (2008) Biomass equations for birch in Finland. Silva Fennica 42:605–624CrossRefGoogle Scholar
  50. Rojas-García F, Jong De, Bernardus HJ, Martínez-Zurimendí P, Paz-Pellat F (2015) Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann For Sci 72:835–864CrossRefGoogle Scholar
  51. Sah JP, Ross MS, Koptur S, Snyder JR (2004) Estimating aboveground biomass of broadleaved woody plants in the understory of Florida keys pine forests. For Ecol Manage 203:319–329CrossRefGoogle Scholar
  52. Satoo T, Madgwick HA (1982) Forest biomass. Kluwer Academic Publishers Group, LondonGoogle Scholar
  53. Schroeder P, Brown S, Mo J, Birdsey R, Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science 43:424–434Google Scholar
  54. Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form—the pipe model theory: I Basic analyses. Jpn J Ecol 14:97–104Google Scholar
  55. Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form—the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14:133–139Google Scholar
  56. Snell O (1892) Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten. Archiv für Psychiatrie und Nervenkrankheiten 23:436–446CrossRefGoogle Scholar
  57. Sprugel DG (1983) Correcting for bias in log-transformed allometric equations. Ecology 64:209CrossRefGoogle Scholar
  58. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. For Ecol Manage 97:1–24CrossRefGoogle Scholar
  59. Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865CrossRefPubMedGoogle Scholar
  60. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667CrossRefGoogle Scholar
  61. Wirth C, Schumacher J, Schulze E-D (2004) Generic biomass functions for Norway spruce in Central Europe: a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–139CrossRefPubMedGoogle Scholar
  62. Yandle DO, Wiant HV (1981) Estimation of plant biomass based on the allometric equation. Can J For Res 11:833–834CrossRefGoogle Scholar
  63. Zianis D, Mencuccini M (2004) On simplifying allometric analyses of forest biomass. For Ecol Manage 187:311–332CrossRefGoogle Scholar
  64. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and Stem volume equations for tree species in Europe. Silva Fennica MonographsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peter Annighöfer
    • 1
  • Aitor Ameztegui
    • 2
  • Christian Ammer
    • 1
  • Philippe Balandier
    • 3
  • Norbert Bartsch
    • 1
  • Andreas Bolte
    • 4
  • Lluís Coll
    • 2
  • Catherine Collet
    • 5
  • Jörg Ewald
    • 6
  • Nico Frischbier
    • 7
  • Tsegay Gebereyesus
    • 1
  • Josephine Haase
    • 8
  • Tobias Hamm
    • 9
  • Bastian Hirschfelder
    • 9
  • Franka Huth
    • 9
  • Gerald Kändler
    • 10
  • Anja Kahl
    • 11
  • Heike Kawaletz
    • 12
  • Christian Kuehne
    • 13
  • André Lacointe
    • 14
  • Na Lin
    • 15
  • Magnus Löf
    • 16
  • Philippe Malagoli
    • 17
  • André Marquier
    • 14
  • Sandra Müller
    • 18
  • Susanne Promberger
    • 19
  • Damien Provendier
    • 20
  • Heinz Röhle
    • 21
  • Jate Sathornkich
    • 22
  • Peter Schall
    • 1
  • Michael Scherer-Lorenzen
    • 18
  • Jens Schröder
    • 23
  • Carolin Seele
    • 11
  • Johannes Weidig
    • 9
  • Christian Wirth
    • 11
  • Heino Wolf
    • 24
  • Jörg Wollmerstädt
    • 9
  • Martina Mund
    • 1
  1. 1.Department of Silviculture and Forest Ecology of the Temperate ZonesUniversity of GöttingenGöttingenGermany
  2. 2.Forest Sciences Centre of Catalonia (CEMFOR-CTFC)SolsonaSpain
  3. 3.IrsteaU.R. Forest Ecosystems (EFNO)Nogent-sur-VernissonFrance
  4. 4.Thünen Institute of Forest EcosystemsEberswaldeGermany
  5. 5.LERFoB, UMR 1092INRA-AgroParisTechChampenouxFrance
  6. 6.Botany and Vegetation ScienceUniversity of Applied Science Weihenstephan-TriesdorfFreisingGermany
  7. 7.Thüringen ForstForestry Research and Competence CentreGothaGermany
  8. 8.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
  9. 9.Institute of Silviculture and Forest ProtectionUniversity of Technology DresdenTharandtGermany
  10. 10.Department for Biometry and InformaticsFVA Baden-WürttembergFreiburgGermany
  11. 11.Systematic Botany and Functional BiodiversityUniversity of LeipzigLeipzigGermany
  12. 12.DBU Naturerbe GmbHOsnabrückGermany
  13. 13.School of Forest ResourcesUniversity of MaineOronoUSA
  14. 14.UMR547 PIAFINRAClermont-FerrandFrance
  15. 15.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouChina
  16. 16.Southern Swedish Forest Research CentreSwedish University of Agricultural ScienceAlnarpSweden
  17. 17.UMR547 PIAFClermont University, University Blaise PascalClermont-FerrandFrance
  18. 18.Faculty of Biology, GeobotanyUniversity of FreiburgFreiburgGermany
  19. 19.Bavarian State Institute of ForestryFreisingGermany
  20. 20.Plante and CitéAngers Cedex 1France
  21. 21.Institute for Forest Growth and BiometricsTechnical University DresdenTharandtGermany
  22. 22.Department of Horticulture, Faculty of AgricultureKasetsart UniversityBangkokThailand
  23. 23.Faculty of Forest and EnvironmentEberswalde University for Sustainable DevelopmentEberswaldeGermany
  24. 24.Department for Forest Genetics and Forest Tree BreedingStaatsbetrieb SachsenforstPirnaGermany

Personalised recommendations