Advertisement

European Journal of Forest Research

, Volume 135, Issue 2, pp 297–311 | Cite as

Integrating tree-ring and inventory-based measurements of aboveground biomass growth: research opportunities and carbon cycle consequences from a large snow breakage event in the Swiss Alps

  • S. KlesseEmail author
  • S. Etzold
  • D. Frank
Original Paper

Abstract

The temporal variability of the forest sink is associated with high uncertainties in both its magnitude and the driving ecological and climatic processes. In this study, we assess the inter-annual variability (IAV) of carbon uptake using annually resolved aboveground biomass increment (ABI) estimates from 272 pseudorandomly sampled trees at a long-term monitoring plot in the dry valley of the Valais in Switzerland. Over the 1950–2011 period, the mean ABI is 86.8 g C m−2 year−1 with an IAV of ±31 %. The IAV is largely driven by hydrological conditions throughout the water year from previous August to current August (r SPEI = 0.56; 1st differenced r = 0.75, p < 0.001). During extremely dry years (such as 1972, 1976, 1998, and 2011), the carbon accumulation was reduced up to 63 % from the long-term mean. Furthermore, our analysis explores possible biases of annual ABI derived from manual band dendrometers in permanent plot inventories caused by water status related changes in tree size. During the snow breakage event in March 2012 and subsequent management activities, 17 % of the standing biomass was killed. We estimate that the remaining trees will take ~16 years to make up for the loss of this disturbance, assuming a similar growth rate of the remaining trees as during the previous 60 years and that a potentially drier climate and the increased water availability for the remaining trees will balance each other. We demonstrate that well-replicated, representative tree-ring datasets have a huge potential to complement shorter-term and lower-resolution forest inventory monitoring data. Integrating tree-ring and plot data allow one to gain knowledge about annual changes in forest productivity even before monitoring started and help ecosystem managers to better adapt their strategies.

Keywords

Dendrochronology Aboveground biomass increment Interannual variability Drought Disturbance 

Notes

Acknowledgments

The authors like to thank Diana Zoglauer and Severin Meier for the tree-ring measurements, Sèrge Borer, Dieter Trummer, Janina Müller, and Dani Nievergelt for their help in the field, Flurin Sutter for answering the numerous questions concerning the inventory data and Volodymyr Trotsiuk for discussion. SK and DF are supported by SNF iTREE Sinergia Project 136295.

Supplementary material

10342_2015_936_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2115 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Babst F, Carrer M, Poulter B et al (2012) 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ Res Lett 7:045705. doi: 10.1088/1748-9326/7/4/045705 CrossRefGoogle Scholar
  3. Babst F, Bouriaud O, Papale D et al (2013a) Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–1303. doi: 10.1111/nph.12589 CrossRefPubMedGoogle Scholar
  4. Babst F, Poulter B, Trouet V et al (2013b) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–717. doi: 10.1111/geb.12023 CrossRefGoogle Scholar
  5. Babst F, Alexander MR, Szejner P et al (2014a) A tree-ring perspective on the terrestrial carbon cycle. Oecologia. doi: 10.1007/s00442-014-3031-6 PubMedGoogle Scholar
  6. Babst F, Bouriaud O, Alexander R et al (2014b) Towards consistent measurements of carbon accumulation: a multi-site assessment of biomass and basal area increment across Europe. Dendrochronologia 32:153–161. doi: 10.1016/j.dendro.2014.01.002 CrossRefGoogle Scholar
  7. Bastos A, Gouveia CM, Trigo RM, Running SW (2014) Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435. doi: 10.5194/bg-11-3421-2014 CrossRefGoogle Scholar
  8. Beer C, Reichstein M, Tomelleri E et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838. doi: 10.1126/science.1184984 CrossRefPubMedGoogle Scholar
  9. Bigler C, Rigling A (2013) Precision and accuracy of tree-ring-based death dates of mountain pines in the Swiss National Park. Trees 27:1703–1712. doi: 10.1007/s00468-013-0917-6 CrossRefGoogle Scholar
  10. Bigler C, Bräker OU, Bugmann H et al (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi: 10.1007/s10021-005-0126-2 CrossRefGoogle Scholar
  11. Bouriaud O, Bréda N, Dupouey J-L, Granier A (2005) Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J For Res 35:2920–2933. doi: 10.1139/x05-202 CrossRefGoogle Scholar
  12. Brändli UB (2010) Schweizerisches Landesforstinventar. Ergebnisse der dritten Erhebung 2004–2006. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland. Swiss Federal Office for Environment, Bern, Switzerland, pp 1–312Google Scholar
  13. Brang P (1997) Aufnahmeanleitungen aller Forschungsprojekte auf Flächen der Langfristigen Waldökosystem-Forschung (LWF). Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), BirmensdorfGoogle Scholar
  14. Brassel P, Lischke H (2001) Swiss national forest inventory: methods and models of the second assessment. WSL Swiss Federal Research Institute, BirmensdorfGoogle Scholar
  15. Brienen RJW, Gloor E, Zuidema PA (2012) Detecting evidence for CO2 fertilization from tree ring studies: The potential role of sampling biases. Global Biogeochem Cycles 26:GB1025. doi: 10.1029/2011GB004143 CrossRefGoogle Scholar
  16. Briffa KR, Melvin TM (2011) A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF (eds) Dendroclimatology. Springer, Netherlands, pp 113–145CrossRefGoogle Scholar
  17. Buras A, Wilmking M (2014) Straight lines or eccentric eggs? A comparison of radial and spatial ring width measurements and its implications for climate transfer functions. Dendrochronologia 32:313–326. doi: 10.1016/j.dendro.2014.07.002 CrossRefGoogle Scholar
  18. Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457. doi: 10.1126/science.1155458 CrossRefPubMedGoogle Scholar
  19. Carrer M, Urbinati C (2001) Assessing climate-growth relationships: a comparative study between linear and non-linear methods. Dendrochronologia 19:57–65Google Scholar
  20. CH2011 (2011) Swiss Climate Change Scenarios CH2011, published by C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, Zurich, Switzerland, 88 ppGoogle Scholar
  21. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi: 10.1038/nature03972 CrossRefPubMedGoogle Scholar
  22. Cook ER, Peters K (1981) The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53Google Scholar
  23. Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333. doi: 10.1007/s10342-005-0085-3 CrossRefGoogle Scholar
  24. Dobbertin M, Eilmann B, Bleuler P et al (2010) Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol 30:346–360. doi: 10.1093/treephys/tpp123 CrossRefPubMedGoogle Scholar
  25. Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais. Switzerland. Dendrochronologia 23:121–132. doi: 10.1016/j.dendro.2005.10.002 CrossRefGoogle Scholar
  26. Eilmann B, Zweifel R, Buchmann N et al (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771. doi: 10.1093/jxb/erq443 CrossRefPubMedGoogle Scholar
  27. Eilmann B, Dobbertin M, Rigling A (2013) Growth response of Scots pine with different crown transparency status to drought release. Ann For Sci 70:685–693. doi: 10.1007/s13595-013-0310-z CrossRefGoogle Scholar
  28. Esper J, Büntgen U, Frank DC et al (2007) 1200 years of regular outbreaks in alpine insects. Proc R Soc B 274:671–679. doi: 10.1098/rspb.2006.0191 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Esper J, Düthorn E, Krusic PJ et al (2014) Northern European summer temperature variations over the Common Era from integrated tree-ring density records. J Quat Sci 29:487–494. doi: 10.1002/jqs.2726 CrossRefGoogle Scholar
  30. Etzold S, Waldner P, Thimonier A et al (2014) Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: recent disturbances matter. For Ecol Manage 311:41–55. doi: 10.1016/j.foreco.2013.05.040 CrossRefGoogle Scholar
  31. Feichtinger LM, Eilmann B, Buchmann N, Rigling A (2014) Growth adjustments of conifers to drought and to century-long irrigation. For Ecol Manage 334:96–105. doi: 10.1016/j.foreco.2014.08.008 CrossRefGoogle Scholar
  32. Fischer AM, Keller DE, Liniger MA et al (2014) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol. doi: 10.1002/joc.4162 Google Scholar
  33. Frank D, Esper J, Cook ER (2006) On variance adjustments in tree-ring chronology development. Tree Rings Archaeol Climatol Ecol 4:56–66Google Scholar
  34. Frank DC, Esper J, Raible CC et al (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–530. doi: 10.1038/nature08769 CrossRefPubMedGoogle Scholar
  35. Friedlingstein P, Houghton RA, Marland G et al (2010) Update on CO2 emissions. Nat Geosci 3:811–812. doi: 10.1038/ngeo1022 CrossRefGoogle Scholar
  36. Fritts H (1976) Tree rings and climate. LondonGoogle Scholar
  37. Gardiner B, Blennow K, Carnus JM, et al (2010) Destructive storms in European forests: past and forthcoming impacts. 138 ppGoogle Scholar
  38. Gärtner H, Esper J, Treydte K (2004) Geomorphologie und Jahrringe—Feldmethoden in der Dendrogeomorphologie | Geomorphology and tree rings—field methods in dendrogeomorphology. Schweizerische Zeitschrift fur Forstwesen 155:198–207. doi: 10.3188/szf.2004.0198 CrossRefGoogle Scholar
  39. Gea-Izquierdo G, Cherubini P, Cañellas I (2011) Tree-rings reflect the impact of climate change on Quercus ilex L. along a temperature gradient in Spain over the last 100years. For Ecol Manage 262:1807–1816. doi: 10.1016/j.foreco.2011.07.025 CrossRefGoogle Scholar
  40. Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Global Biogeochem Cycles 24:GB3027. doi: 10.1029/2009GB003699 CrossRefGoogle Scholar
  41. Girardin MP, Guo XJ, De Jong R et al (2014) Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Change Biol 20:851–866. doi: 10.1111/gcb.12400 CrossRefGoogle Scholar
  42. Giuggiola A, Bugmann H, Zingg A et al (2013) Reduction of stand density increases drought resistance in xeric Scots pine forests. For Ecol Manage 310:827–835. doi: 10.1016/j.foreco.2013.09.030 CrossRefGoogle Scholar
  43. Gower ST, Isebrands JG, Sheriff DW (1995) Carbon allocation and accumulation in conifers. In: Smith WK, Hinckley TM (eds) Resource physiology of conifers: acquisition, allocation, and utilization. Academic Press, San Diego, pp 217–254CrossRefGoogle Scholar
  44. Grill D, Tausz M, Pöllinger U et al (2004) Effects of drought on needle anatomy of Pinus canariensis. Flora Morphol Distrib Funct Ecol Plants 199:85–89. doi: 10.1078/0367-2530-00137 CrossRefGoogle Scholar
  45. Hanewinkel M, Frutig F, Lemm R (2013) Economic performance of uneven-aged forests analysed with annuities. Forestry. doi: 10.1093/forestry/cpt043 Google Scholar
  46. Harris I, Jones Pd, Osborn Tj, Lister Dh (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  47. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  48. Hug C, Dobbertin M, Nussbaumer C, Stettler Y (2011) Aufnahmeanleitung für die Brusthöhenumfang- und Höheninventur auf den Flächen der Langfristige Waldökosystemforschung (LWF) Swiss Federal Institute für Forest, Snow and Landscape Research (WSL). Birmensdorf, SwitzerlandGoogle Scholar
  49. Jolly WM, Dobbertin M, Zimmermann NE, Reichstein M (2005) Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophys Res Lett 32:L18409. doi: 10.1029/2005GL023252 CrossRefGoogle Scholar
  50. Joosten R, Schumacher J, Wirth C, Schulte A (2004) Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. For Ecol Manage 189:87–96. doi: 10.1016/j.foreco.2003.07.037 CrossRefGoogle Scholar
  51. Kaufmann E (2001) Estimating standing timber, growth and cut. In: Brassel P, Lischke H (eds) Swiss National Forest Inventory: methods and models of the second assessment. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, pp 162–196Google Scholar
  52. Keeton WS, Whitman AA, McGee GC, Goodale CL (2011) Late-successional biomass development in northern hardwood-conifer forests of the northeastern United States. For Sci 57:489–505Google Scholar
  53. Kerhoulas LP, Kane JM (2012) Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Tree Physiol 32:14–23. doi: 10.1093/treephys/tpr112 CrossRefPubMedGoogle Scholar
  54. King G, Fonti P, Nievergelt D et al (2013) Climatic drivers of hourly to yearly tree radius variations along a 6 C natural warming gradient. Agric For Meteorol 168:36–46. doi: 10.1016/j.agrformet.2012.08.002 CrossRefGoogle Scholar
  55. Kurz WA, Dymond CC, Stinson G et al (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. doi: 10.1038/nature06777 CrossRefPubMedGoogle Scholar
  56. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, BerlinCrossRefGoogle Scholar
  57. Le Page Y, Hurtt G, Thomson AM et al (2013) Sensitivity of climate mitigation strategies to natural disturbances. Environ Res Lett 8:015018. doi: 10.1088/1748-9326/8/1/015018 CrossRefGoogle Scholar
  58. Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2014. Earth System Sci Data 7:47–85. doi: 10.5194/essd-7-47-2015 CrossRefGoogle Scholar
  59. Lindroth A, Lagergren F, Grelle A et al (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15:346–355. doi: 10.1111/j.1365-2486.2008.01719.x CrossRefGoogle Scholar
  60. Löf M, Welander NT (2000) Carry-over effects on growth and transpiration in Fagus sylvatica seedlings after drought at various stages of development. Can J For Res 30:468–475. doi: 10.1139/x99-232 CrossRefGoogle Scholar
  61. Luyssaert S, Schulze E-D, Börner A et al (2008) Old-growth forests as global carbon sinks. Nature 455:213–215. doi: 10.1038/nature07276 CrossRefPubMedGoogle Scholar
  62. Magnani F, Mencuccini M, Borghetti M et al (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:849–851. doi: 10.1038/nature05847 CrossRefGoogle Scholar
  63. Manusch C, Bugmann H, Wolf A (2014) The impact of climate change and its uncertainty on carbon storage in Switzerland. Reg Environ Change. doi: 10.1007/s10113-014-0586-z Google Scholar
  64. Martin-Benito D, Pederson N, McDonald M et al (2014) Dendrochronological dating of the world trade center ship, Lower Manhattan, New York City. Tree Ring Res 70:65–77. doi: 10.3959/1536-1098-70.2.65 CrossRefGoogle Scholar
  65. Metsaranta JM, Lieffers VJ (2009) Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82:163–173. doi: 10.1093/forestry/cpn051 CrossRefGoogle Scholar
  66. Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014) Convergence of terrestrial plant production across global climate gradients. Nature. doi: 10.1038/nature13470 PubMedGoogle Scholar
  67. Nabuurs G-J, Lindner M, Verkerk PJ et al (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Change 3:792–796. doi: 10.1038/nclimate1853 CrossRefGoogle Scholar
  68. Nehrbass-Ahles C, Babst F, Klesse S et al (2014) The influence of sampling design on tree-ring-based quantification of forest growth. Glob Change Biol 20:2867–2885. doi: 10.1111/gcb.12599 CrossRefGoogle Scholar
  69. Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi: 10.1126/science.1082750 CrossRefPubMedGoogle Scholar
  70. Osborn TJ, Briffa KR, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 15:89–99Google Scholar
  71. Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi: 10.1126/science.1201609 CrossRefPubMedGoogle Scholar
  72. Pederson N, Dyer JM, McEwan RW et al (2014) The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecol Monogr 84:599–620. doi: 10.1890/13-1025.1 CrossRefGoogle Scholar
  73. Peters RL, Groenendijk P, Vlam M, Zuidema PA (2014) Detecting long-term growth trends using tree rings: a critical evaluation of methods. Glob Change Biol. doi: 10.1111/gcb.12826 Google Scholar
  74. Poulter B, Frank D, Ciais P et al (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603. doi: 10.1038/nature13376 CrossRefPubMedGoogle Scholar
  75. Pouttu A, Dobbertin M (2000) Needle-retention and density patterns in Pinus sylvestris in the Rhone Valley of Switzerland: comparing results of the needle-trace method with visual defoliation assessments. Can J For Res 30:1973–1982. doi: 10.1139/x00-127 CrossRefGoogle Scholar
  76. Pretzsch H, Biber P, Schütze G et al (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967. doi: 10.1038/ncomms5967 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Reichstein M, Bahn M, Ciais P et al (2013) Climate extremes and the carbon cycle. Nature 500:287–295. doi: 10.1038/nature12350 CrossRefPubMedGoogle Scholar
  78. Rigling A, Waldner PO, Forster T et al (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31:18–31. doi: 10.1139/cjfr-31-1-18 CrossRefGoogle Scholar
  79. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121. doi: 10.1023/A:1020355407821 CrossRefGoogle Scholar
  80. Schweingruber FH (1993) Trees and wood in dendrochronology: morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Springer, BerlinCrossRefGoogle Scholar
  81. Seedre M, Shrestha BM, Chen HYH et al (2011) Carbon dynamics of North American boreal forest after stand replacing wildfire and clearcut logging. J For Res 16:168–183. doi: 10.1007/s10310-011-0264-7 CrossRefGoogle Scholar
  82. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810. doi: 10.1038/nclimate2318 CrossRefGoogle Scholar
  83. Solberg S (1999) Crown condition and growth relationships within stands of picea abies. Scand J For Res 14:320–327. doi: 10.1080/02827589950152638 CrossRefGoogle Scholar
  84. Solberg S (2004) Summer drought: a driver for crown condition and mortality of Norway spruce in Norway. For Pathol 34:93–104. doi: 10.1111/j.1439-0329.2004.00351.x Google Scholar
  85. St. George S (2014) An overview of tree-ring width records across the Northern Hemisphere. Quat Sci Rev 95:132–150. doi: 10.1016/j.quascirev.2014.04.029 CrossRefGoogle Scholar
  86. St. George S, Ault TR (2014) The imprint of climate within Northern Hemisphere trees. Quat Sci Rev 89:1–4. doi: 10.1016/j.quascirev.2014.01.007 CrossRefGoogle Scholar
  87. Stoffel M, Corona C (2014) Dendroecological dating of geomorphic disturbance in trees. Tree Ring Res 70:3–20. doi: 10.3959/1536-1098-70.1.3 CrossRefGoogle Scholar
  88. Svoboda M, Janda P, Bače R et al (2014) Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 25:386–401. doi: 10.1111/jvs.12109 CrossRefGoogle Scholar
  89. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206CrossRefGoogle Scholar
  90. Thimonier A, Kull P, Keller W et al (2011) Ground vegetation monitoring in Swiss forests: comparison of survey methods and implications for trend assessments. Environ Monit Assess 174:47–63. doi: 10.1007/s10661-010-1759-y CrossRefPubMedGoogle Scholar
  91. Trotsiuk V, Svoboda M, Janda P et al (2014) A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For Ecol Manage 334:144–153. doi: 10.1016/j.foreco.2014.09.005 CrossRefGoogle Scholar
  92. Trotsiuk V, Svoboda M, Weber P, Klesse S, Pederson N, Janda P, Martin-Benito D, Mikolas M, Seedre M, Bace R, Frank D (in preparation) The role of disturbances on the individual tree and stand living above ground biomass stocks and accumulation in the primary montane Picea abies (L.) Karst. ForestGoogle Scholar
  93. Van der Maaten-Theunissen M, Bouriaud O (2012) Climate–growth relationships at different stem heights in silver fir and Norway spruce. Can J For Res 42:958–969. doi: 10.1139/x2012-046 CrossRefGoogle Scholar
  94. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. doi: 10.1175/2009JCLI2909.1 CrossRefGoogle Scholar
  95. Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–792. doi: 10.1111/j.1654-1103.2007.tb02594.x CrossRefGoogle Scholar
  96. Wilmking M, Hallinger M, Van Bogaert R et al (2012) Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30:213–222. doi: 10.1016/j.dendro.2011.10.001 CrossRefGoogle Scholar
  97. Woodhouse CA (1999) Artificial neural networks and dendroclimatic reconstructions: an example from the Front Range, Colorado, USA. The Holocene 9:521–529CrossRefGoogle Scholar
  98. Wu C, Chen JM, Black TA et al (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr 22:994–1006. doi: 10.1111/geb.12044 CrossRefGoogle Scholar
  99. Zianis D, Seura SM, Metsäntutkimuslaitos (2005) Biomass and stem volume equations for tree species in Europe. Finnish Society of Forest Science, Finnish Forest Research Institute, Helsinki, FinlandGoogle Scholar
  100. Zingg A (1996) Diameter and basal area increment in permanent growth and yield plots in Switzerland. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) Growth trends in european forests. Springer, Berlin, pp 239–265CrossRefGoogle Scholar
  101. Zscheischler J, Reichstein M, Harmeling S et al (2014) Extreme events in gross primary production: a characterization across continents. Biogeosciences 11:2909–2924. doi: 10.5194/bg-11-2909-2014 CrossRefGoogle Scholar
  102. Zweifel R, Zimmermann L, Newbery DM (2005) Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiol 25:147–156. doi: 10.1093/treephys/25.2.147 CrossRefPubMedGoogle Scholar
  103. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi: 10.1093/jxb/erj125 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchBernSwitzerland

Personalised recommendations