European Journal of Forest Research

, Volume 135, Issue 2, pp 283–295 | Cite as

Variability in growth of trees in uneven-aged stands displays the need for optimizing diversified harvest diameters

  • Joerg Roessiger
  • Andrej Ficko
  • Christian Clasen
  • Verena C. Griess
  • Thomas Knoke
Original Paper

Abstract

This study presents economically optimal management of uneven-aged mixed mountain forests that takes into account tree growth variability. We divided 9846 silver fir (Abies alba), beech (Fagus sylvatica), and spruce (Picea abies) trees measured on 898 forest inventory plots in the Snežnik and Leskova dolina management units (4905 ha, Dinaric mountains, Slovenia) into three growth classes (slow-, medium-, and fast-growing trees) to simulate optimal forest management over a period of 100 years with respect to changing tree growth, stand density, diameter distribution, and tree species composition. We developed a density-dependent and stage and growth-structured matrix transition model which—simultaneous to the long-term stand dynamics projection—scheduled optimal harvesting to maximize the net present value using a nonlinear approach. The ecology of tree species was considered by using tree species-specific and stand-density and diameter-dependent logistic functions for ingrowth, transition, and mortality. The model projected a shift in tree species composition from fir-dominated to beech-dominated forests within 100 years. A change from harvesting slow- and fast-growing trees as if they all had medium growth to growth-sensitive harvesting increased the net revenue and maintained the uneven-aged stand structure. Optimal harvest diameters varied among growth classes, time periods, and tree species according to the economic maturity of individual trees and ranged from 12 (pre-commercial thinning) to 72 cm (target diameter). The simulation highlights the potential of improved bio-economic models for increasing yield from uneven-aged forests and scheduling optimal management regimes with multiple objectives.

Keywords

Bio-economic modeling Simultaneous optimization Close-to-nature forest management Continuous-cover forestry Ecological dynamics Matrix transition model 

Notes

Acknowledgments

This study resulted from the collaboration between Technische Universität München and University of Ljubljana within the framework of the project “Uncertainty and the bioeconomics of near-natural silviculture” (KN 586/7-2) funded by the German Research Foundation (DFG) and the project “ARANGE—Advanced multifunctional forest management in European mountain ranges” (FP7-KBBE-2011-5) funded by the European Commission, FP7. J. R. thanks National Forest Center—Forest Research Institute Zvolen—for the support by Operational Programme Research and Development Fund (Project ITMS 26220120069, 3 % contribution). A. F. thanks the Pahernik Foundation for financial support. The authors thank the Slovenia Forest Service for providing valuable inventory and price data, Elizabeth Gosling and Laura Carlson for language editing of the manuscript, and two anonymous reviewers for their valuable suggestions.

Supplementary material

10342_2015_935_MOESM1_ESM.doc (616 kb)
Supplementary material 1 (DOC 615 kb)

References

  1. Armstrong CW (2007) A note on the ecological–economic modelling of marine reserves in fisheries. Ecol Econ 62:242–250CrossRefGoogle Scholar
  2. Biolley HE (1922) Die Forsteinrichtung: auf der Grundlage der Erfahrung und insbesondere das Kontrollverfahren. Attinger VerlagGoogle Scholar
  3. Boncina A (2011) History, current status and future prospects of uneven-aged forest management in the Dinaric region: an overview. For Int J For Res 84:467–478Google Scholar
  4. Brienen RJW, Zuidema PA (2007) Incorporating persistent tree growth differences increases estimates of tropical timber yield. Front Ecol Environ 5:302–306CrossRefGoogle Scholar
  5. Bright G, Price C (2000) Valuing forest land under hazards to crop survival. For Int J For Res 73:361–370Google Scholar
  6. Bühl A (2008) SPSS 16, Einführung in die moderne Datenanalyse. Pearson Studium, MünchenGoogle Scholar
  7. Bulte EH, van Kooten GC (1999) Meta population dynamics and stochastic bioeconomic modeling. Ecol Econ 30:293–299CrossRefGoogle Scholar
  8. Buongiorno J, Michie BR (1980) A matrix model of uneven-aged forest management. For Sci 26:609–625Google Scholar
  9. Buongiorno J, Dahir S, Lu H, Lin C (1994) Tree size diversity an economic returns in uneven-aged forest stands. For Sci 40:83–104Google Scholar
  10. Buongiorno J, Peyron JL, Houllier L, Bruciamacchie M (1995) Growth and management of mixed-species, uneven-aged forests in the French jura: implications for economic returns and tree diversity. For Sci 41:397–429Google Scholar
  11. Buongiorno J, Halvorsen EA, Bollandsås OM, Gobakken T, Hofstad O (2012) Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage. Scand J For Res 27:460–473CrossRefGoogle Scholar
  12. Caswell H (2006) Matrix population models. Construction, analysis, and interpretation, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  13. Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. For Int J For Res 79:489–502Google Scholar
  14. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) Nature 387:253–260Google Scholar
  15. Cotta H (1828) Anweisung zum Waldbau. Carl Heinrich Edmund von BergGoogle Scholar
  16. Didion M, Kupferschmid AD, Wolf A, Bugmann H (2011) Ungulate herbivory modifies the effects of climate change on mountain forests. Clim Change 109:647–669CrossRefGoogle Scholar
  17. Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166CrossRefGoogle Scholar
  18. Fabrika M, Ďurský J (2005) Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51:431–445Google Scholar
  19. Faustmann M (1849) Berechnung des Werthes, welchen Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst- und Jagdzeitung 15:441–451Google Scholar
  20. Ficko A, Poljanec A, Boncina A (2011) Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? For Ecol Manag 261:844–854CrossRefGoogle Scholar
  21. Gayer K (1886) Der gemischte Wald: seine Begründung und Pflege, insbesondere durch Horst- und Gruppenwirtschaft. Paul Parey, BerlinGoogle Scholar
  22. Griess VC, Knoke T (2011) Growth performance, wind-throw, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1159CrossRefGoogle Scholar
  23. Griess VC, Knoke T (2013) Bioeconomic modelling of mixed Norway spruce—European beech stands: Economic consequences of considering ecological effects. Eur J For Res 132:511–522CrossRefGoogle Scholar
  24. Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296CrossRefGoogle Scholar
  25. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207CrossRefGoogle Scholar
  26. Hanewinkel M, Kuhn T, Bugmann H, Lanz A, Brang P (2014) Vulnerability of uneven-aged forests to storm damage. For Int J For Res 87:525–534Google Scholar
  27. Hao Q, Meng F, Zhou Y, Wang J (2005) Determining the optimal selective harvest strategy for mixed-species stands with a transition matrix growth model. New For 29:207–219CrossRefGoogle Scholar
  28. Jübner D (2006) Ökonomische Modellanalyse zur Bewirtschaftung eines Plenterwaldes am Beispiel einer Versuchsfläche im Emmental, Schweiz. Diplomarbeit TU DresdenGoogle Scholar
  29. Klemperer WD (1996) Forest resource economics and finance. McGraw Hill, New YorkGoogle Scholar
  30. Knoke T (2003) Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecol Model 169:295–312CrossRefGoogle Scholar
  31. Knoke T (2012) The economics of continuous cover forestry. In: Pukkala T, von Gadow K (eds) Continuous cover forestry, vol 23, 2nd edn. Springer, Dordrecht, pp 167–193CrossRefGoogle Scholar
  32. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech-Norway spruce stands in bioeconomic modeling. Ecol Model 210:487–498CrossRefGoogle Scholar
  33. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species—a review on yield, ecological stability and economics. Eur J For Res 127:89–101CrossRefGoogle Scholar
  34. Kolmanic S, Guid N, Diaci J (2014) ForestMAS—A single tree based secondary succession model employing Ellenberg indicator values. Ecol Model 279:100–113CrossRefGoogle Scholar
  35. Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth Verlag, HannoverGoogle Scholar
  36. Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2011) SORTIE/NZ model development. Landcare Research Manaaki Whenua New Zealand Ltd 2011Google Scholar
  37. Kunstler G, Allen RB, Coomes DA, Canham CD, Wright EF (2013) Sustainable management, earthquake disturbances, and transient dynamics: modelling timber harvesting impacts in mixed-species forests. Ann For Sci 70:287–298CrossRefGoogle Scholar
  38. Leibundgut H (1986) Ziele und Wege der naturnahen Waldwirtschaft. Schweizerische Zeitschrift für Forstwesen 137:245–250Google Scholar
  39. Lin CR, Buongiorno J, Vasievich M (1996) A multi-species, density-dependent matrix growth model to predict tree diversity and income in northern hardwood stands. Ecol Model 91:193–211CrossRefGoogle Scholar
  40. Lindenmayer D, Burgmann M (2005) Practical conservation biology. Csiro Publishing. ISBN: 0643090894Google Scholar
  41. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  42. Lindo Systems Inc (2012) “What’s Best”® version 12.0.1.5Google Scholar
  43. Linkevičius E (2014) Single Tree Level Simulator for Lituanian Pine Forests. Dissertation Technische Universität Dresden. Institute of Forest Growth and Forest Computer Sciences. Tharandt. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-150330
  44. Lotka AJ (1931) The structure of a growing population. Hum Biol 3:459–493Google Scholar
  45. Mendoza G, Önal H, Soetjipto W (2000) Optimising tree diversity and economic returns from managed mixed forests in Kalimantan, Indonesia. J Trop For Sci 12:298–319Google Scholar
  46. Merganič J, Fabrika M (2011) Modelling natural regeneration in SYBILA tree growth simulator. Deutscher Verband Forstlicher Versuchsanstalten Sektion Ertragskunde. Beiträge zur Jahrestagung 6 bis 8. Juni 2011 Cottbus, herausgegeben von J. NagelGoogle Scholar
  47. Microsoft Corporation (2010) Microsoft Excel® Google Scholar
  48. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  49. Möhring B, Rüping U, Leefken G, Ziegeler M (2006) Die Annuität—ein “missing link” der Forstökonomie. Allgemeine Forst- und Jagdzeitung 177:21–29Google Scholar
  50. Monserud RA, Sterba H, Hasenauer H (1997) The single-tree stand growth simulator PROGNAUS. In: Teck R, Moeur M, Adams J (eds) Proceedings: forest vegetation simulator conference. Fort Collins, CO, USDA Forest Service Intermountain Research Station, Intermountain Research Station INT-GTR-373 pp 50–56Google Scholar
  51. Müller M (2009) Ein Matrix-Modell zur Prognose der Entwicklung ungleichaltriger Mischbestände im Stadtwald München. Diplomarbeit TU MünchenGoogle Scholar
  52. Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn A, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol 21:935–946CrossRefGoogle Scholar
  53. Pretzsch H (2000) From yield tables to simulation models for pure and mixed stands. J For Sci 46:97–113Google Scholar
  54. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  55. Pretzsch H, Biber P, Dursky J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21CrossRefGoogle Scholar
  56. Pretzsch H, Biber P, Schütze G, Bielak K (2013) Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For Ecol Manag 316:65–77CrossRefGoogle Scholar
  57. Prodan M (1949) Die theoretische Bestimmung des Gleichgewichtszustandes im Plenterwalde. Schweizische Zeitschrift für. Forstwesen 100:81–99Google Scholar
  58. Rämö J, Tahvonen O (2014) Economics of harvesting uneven-aged forest stands in Fennoscandia. Scand J For Res 29:777–792CrossRefGoogle Scholar
  59. Roessiger J, Griess VC, Knoke T (2011) May risk aversion lead to near-natural forestry? A simulation study. For Int J For Res 84:527–537Google Scholar
  60. Roessiger J, Griess VC, Härtl F, Clasen C, Knoke T (2013) How economic performance of a stand increases due to decreased failure risk associated with the admixing of species. Ecol Model 255:58–69CrossRefGoogle Scholar
  61. Saje R, Saražin J, Šeber R (2014) Žledolomi v slovenskih gozdovih. Gozdarski vestnik 72:204–210Google Scholar
  62. Schober R (1953) Ertragstafel und Forsteinrichtung. Forstwissenschaftliches Centralblatt 72:1–13CrossRefGoogle Scholar
  63. Schröder J, Röhle H, Münder K (2005) Simulation und Bewertung von Managementoptionen mit dem Waldwachstumssimulator BWINPro-S. Forst und Holz 60:411–415Google Scholar
  64. Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands and consequences for silviculture. Eur J For Res 125:291–302CrossRefGoogle Scholar
  65. Seidl R, Rammer W, Jäger D, Lexer MJ (2008) Impact of bark beetle (Ips typographus L.) disturbances on timber production and carbon sequestration in different management strategies under climate change. For Ecol Manag 256:209–220CrossRefGoogle Scholar
  66. SFS (1992/2003) Slovenia forest service. Forest inventory data. Permanent sample plot databases Ploskdv.dbf and Ploskev.dbf. LjubljanaGoogle Scholar
  67. SFS (2004) Slovenia Forest Service. Logging register 1995–2004. Database Timber.dbf. Slovenia Forest Service, LjubljanaGoogle Scholar
  68. SFS (2011) Regional forest management plan Postojna 2011–2020. Slovenia Forest Service, Slovenia, PostojnaGoogle Scholar
  69. Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest ecology, 9th edn. Wiley, New YorkGoogle Scholar
  70. Sonnemann D (2008) Das ideale Plentergleichgewicht—Leitbild oder Luxus? Essay. Schweizerische Zeitschrift für Forstwesen 159:1–7CrossRefGoogle Scholar
  71. SPSS Inc (2012) IBM® SPSS® Statistics Version 21Google Scholar
  72. Stancioiu PT, O’Hara KL (2006) Regeneration growth in different light environments of mixed species, multiaged, mountainous forests of Romania. Eur J For Res 125:151–162CrossRefGoogle Scholar
  73. Tahvonen O, Pukkala T, Laiho O, Lähde E, Niinimäki S (2010) Optimal management of uneven-aged Norway spruce stands. For Ecol Manag 260:106–115CrossRefGoogle Scholar
  74. Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402CrossRefGoogle Scholar
  75. Thomson TA (1991) Efficient combinations of timber and financial market investments in single-period and multiperiod portfolios. For Sci 37:461–480Google Scholar
  76. Thorpe HC, Thomas SC, Caspersen JP (2008) Tree mortality following partial harvests determined by skidding proximity. Ecol Appl 18:1652–1663CrossRefPubMedGoogle Scholar
  77. Tregubov V (1957) Gozdne rastlinske združbe. In: Tregubov V, Čokl M (eds.). Prebiralni gozdovi na Snežniku, Inštitut za gozdno in lesnogospodarstvo, Strokovna in znanstvena dela 4, Ljubljana, pp 23–65Google Scholar
  78. Utschig H, Neufanger M, Zanker T (2011) Das 100-Baum-Konzept als Einstieg für Durchforstungsregeln in Mischbeständen. Allgemeine Forstzeitschrift für Waldwirtschaft und Umweltvorsorge AFZ-Der Wald AFZ 21:4–6Google Scholar
  79. Valkonen S, Valsta L (2001) Productivity and economics of mixed two-storied spruce and birch stands in Southern Finland simulated with empirical models. For Ecol Manag 140:133–149CrossRefGoogle Scholar
  80. Vítková L, Dhubháin AN (2013) Transformation to continuous cover forestry: a review. Irish For 130:119–140Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joerg Roessiger
    • 1
    • 2
    • 3
  • Andrej Ficko
    • 2
  • Christian Clasen
    • 1
  • Verena C. Griess
    • 1
    • 4
  • Thomas Knoke
    • 1
  1. 1.Institute of Forest Management, Department of Ecology and Ecosystem Management, Center of Life and Food Sciences WeihenstephanTechnische Universität MünchenFreisingGermany
  2. 2.Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  3. 3.National Forest Center - Forest Research Institute ZvolenZvolenSlovakia
  4. 4.Department of Forest Resources Management, Faculty of ForestryUniversity of British ColumbiaVancouverCanada

Personalised recommendations