Advertisement

European Journal of Forest Research

, Volume 135, Issue 1, pp 23–49 | Cite as

Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives

  • Miren del RíoEmail author
  • Hans Pretzsch
  • Iciar Alberdi
  • Kamil Bielak
  • Felipe Bravo
  • Andreas Brunner
  • Sonia Condés
  • Mark J. Ducey
  • Teresa Fonseca
  • Nikolas von Lüpke
  • Maciej Pach
  • Sanja Peric
  • Thomas Perot
  • Zahera Souidi
  • Peter Spathelf
  • Hubert Sterba
  • Martina Tijardovic
  • Margarida Tomé
  • Patrick Vallet
  • Andrés Bravo-Oviedo
Assmann Review

Abstract

The growth and yield of mixed-species stands has become an important topic of research since there are certain advantages of this type of forest as regards functions and services. However, the concepts and methods used to characterize mixed stands need to be understood, as well as harmonized and standardized. In this review we have compiled a set of measures, indices, and methods at stand level to characterize the structure, dynamics, and productivity of mixed stands, and we discuss the pros and cons of their application in growth and yield studies. Parameters for the characterization of mixed stand structure such as stand density, species composition, horizontal (intermingling) and vertical tree distribution pattern, tree size distribution, and age composition are described, detailing the potential as well as the constraints of these parameters for understanding resource capture, use, and efficiency in mixed stands. Furthermore, a set of stand-level parameters was evaluated to characterize the dynamics of mixed stands, e.g. height growth and space partitioning, self- and alien-thinning, and growth partitioning among trees. The deviations and changes in the behaviour of the analysed parameters in comparison with pure stand conditions due to inter-specific interactions are of particular interest. As regards stand productivity, we reviewed site productivity indices, the growth–density relationship in mixed stands as well as methods to compare productivity in mixed versus monospecific stands. Finally, we discuss the main problems associated with the methodology such as up-scaling from tree to stand level as well as the relevance of standardized measures and methods for improving forest growth and yield research in mixed stands. The main challenges are also outlined, especially the need for qualitatively sound data.

Keywords

Stand structure indices Growth pattern Self- and alien-thinning Maximum density Site productivity indices Mixing effect 

Notes

Acknowledgments

The networking in this study has been supported by COST Action FP1206 EuMIXFOR. The first author also thanks the Spanish Ministry of Economy and Competitiveness for funding the research project “Mixed Forest complexity and sustainability: dynamic, silviculture and adaptive management tools” (AGL2014-51964-C2-2-R). We thank two anonymous reviewers for their constructive comments.

References

  1. Adame P, Brandeis TJ, Uriarte M (2014) Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests. For Syst 23(1):52–63Google Scholar
  2. Alberdi I, Cañellas I, Hernández L, Condés S (2013) A new method for the identification of old-growth trees in National Forest Inventories: application to Pinus halepensis Mill stands in Spain. Ann For Sci 70:277–285CrossRefGoogle Scholar
  3. Amoroso MM, Turnblom EC (2006) Comparing productivity of pure and mixed Douglas-fir and western hemlock plantations in the Pacific Northwest. Can J For Res 36:1484–1496CrossRefGoogle Scholar
  4. Assmann E (1953) Die Verlagerung der Höhenkurven von Plenterwaldflächen und ihre Ursachen. Allg Forst- u Jagdztg 124:175–177Google Scholar
  5. Assmann E (1954) Die Standraumfrage und die Methodik von Mischbestandsuntersuchungen. Allg Forst- u Jagdztg 125:149–153Google Scholar
  6. Assmann E (1967) Über einige Möglichkeiten, den Gefährdungsgrad und Pflegebedarf, die Holzqualität und geldwerte Leistung von Rein- und Mischbeständen günstig zu beeinflussen. Forstw Cbl 86:81–89CrossRefGoogle Scholar
  7. Assmann E (1970) The principles of forest yield study: studies in the organic production, structure, increment and yield of forest stands. Pergamon Press, OxfordGoogle Scholar
  8. Barbati A, Salvati R, Ferrari B, Di Santo D, Quatrini A, Portoghesi L, Travaglini D, Iovino F, Nocentini S (2012) Assessing and promoting old-growthness of forest stands: lessons from research in Italy. Plant Biosyst 146(1):167–174CrossRefGoogle Scholar
  9. Barbeito I, Montes F, Cañellas I (2009) Evaluating the behaviour of vertical structure indices in Scots pine forests. Ann For Sci 66(710):1–10Google Scholar
  10. Barbeito I, Collet C, Ningre F (2014) Crown responses to neighbour density and species identity in a young mixed deciduous stand. Trees 28:1751–1765CrossRefGoogle Scholar
  11. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell, OxfordGoogle Scholar
  12. Belote RT, Prisley S, Jones RH, Fitzpatrick M, de Beurs K (2011) Forest productivity and tree diversity relationships depend on ecological context within mid-Atlantic and Appalachian forests (USA). For Ecol Manag 261(7):1315–1324CrossRefGoogle Scholar
  13. Berrill JP, O’Hara KL (2014) Estimating site productivity in irregular stand structures by indexing basal area or volume increment of the dominant species. Can J For Res 44(1):92–100CrossRefGoogle Scholar
  14. Bielak K, Dudzinska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Syst 23(3):573–589Google Scholar
  15. Bielak K, Dudzińska M, Pretzsch H (2015) Volume growth of mixed-species versus pure stands: results from selected long-term experimental plots in Central Europe. Sylwan 159(1):22–35Google Scholar
  16. Biging GS, Dobbertin M (1992) A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38(3):695–720Google Scholar
  17. Binkley D (2004) A hypothesis about the interaction of tree dominance and stand production through stand development. For Ecol Manag 190(2):265–271CrossRefGoogle Scholar
  18. Binkley D, Greene S (1983) Production in mixtures of conifers and red alder: the importance of site fertility and stand age. In: Ballard R, Gessel S (eds) IUFRO symposium on forest site and continuous productivity. US Dep Agric For Serv Gen Tech Rep PNW-163:112–117Google Scholar
  19. Binkley D, Senock R, Bird S, Cole T (2003) Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing Falcataria mollucana. For Ecol Manag 182:93–102CrossRefGoogle Scholar
  20. Binkley D, Kashian DM, Boyden S, Kaye MW, Bradford JB, Arthur MA, Fornwalt PJ, Ryna MG (2006) Patterns of growth dominance in forests of the Rocky Mountains, USA. For Ecol Manag 236(2):193–201CrossRefGoogle Scholar
  21. Bollandsas OM, Buongiorno J, Gobakken T (2008) Predicting the growth of stands of trees of mixed species and size: a matrix model for Norway. Scand J For Res 23(2):167–178CrossRefGoogle Scholar
  22. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  23. Bongers F (2001) Methods to assess tropical rain forest canopy structure: an overview. Plant Ecol 153:263–277CrossRefGoogle Scholar
  24. Bontemps JD, Bouriaud O (2013) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 87:109–128CrossRefGoogle Scholar
  25. Borders BE, Souter RA, Bailey RL, Ware KD (1987) Percentile based distributions characterize forest stand tables. For Sci 33:570–576Google Scholar
  26. Bravo-Oviedo A, Pretzsch H, Ammer C, Andenmatten E, Barbati A, Barreiro S, Brang P, Bravo F, Coll L, Corona P, den Ouden J, Ducey MJ, Forrester DI, Giergiczny M, Jacobsen JB, Lesinski J, Löf M, Mason WL, Matovic B, Metslaid M, Morneau F, Motiejunaite J, O’Reilly C, Pach M, Ponette Q, del Río M, Short I, Skovsgaard JP, Soliño M, Spathelf P, Sterba H, Stojanovic D, Strelcova K, Svoboda M, Verheyen K, von Lüpke N (2014) European Mixed Forests: definition and research perspectives. For Syst 23:518–533Google Scholar
  27. Brokaw NV, Lent RA (1999) Vertical structure. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  28. Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, DordrechtCrossRefGoogle Scholar
  29. Caspersen JP, Pacala SW (2001) Successional diversity and forest ecosystem function. Ecol Res 16:895–903CrossRefGoogle Scholar
  30. Charru M, Seynave I, Morneau F, Rivoire M, Bontemps JD (2012) Significant differences and curvilinearity in the self-thinning relationship of 11 temperate tree species assessed from forest inventory data. Ann For Sci 69:195–205CrossRefGoogle Scholar
  31. Chen HY, Klinka K, Mathey AH, Wang X, Varga P, Chourmouzis C (2003) Are mixed-species stands more productive than single-species stands: an empirical test of three forest types in British Columbia and Alberta. Can J For Res 33(7):1227–1237CrossRefGoogle Scholar
  32. Clapham AR (1936) Over-dispersion in grassland communities and the use of statistical methods in plant ecology. J Ecol 24:232–251CrossRefGoogle Scholar
  33. Clark J, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  34. Condés S, del Rio M, Sterba H (2013) Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. For Ecol Manag 292:86–95CrossRefGoogle Scholar
  35. Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40CrossRefGoogle Scholar
  36. Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, New YorkCrossRefGoogle Scholar
  37. David FN, Moore PG (1954) Notes on contagious distributions in plant populations. Ann Bot Lond 18:47–53Google Scholar
  38. De Camino R (1976) Zur Bestimmung der Bestandeshomogenität. Allgemeine Forst- und Jagdzeitung 147(2/3):54–58Google Scholar
  39. Dean TJ, Baldwin VC (1996) The relationship between Reineke’s stand-density index and physical stem mechanics. For Ecol Manag 81:25–34CrossRefGoogle Scholar
  40. del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66:502CrossRefGoogle Scholar
  41. Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546Google Scholar
  42. Douglas JB (1975) Clustering and aggregation. Sankhya Ser B 37:398–417Google Scholar
  43. Droessler TD, Burk TE (1989) A test of nonparametric smoothing of diameter distributions. Scand J For Res 4:407–415CrossRefGoogle Scholar
  44. Drössler L, Övergaard R, Ekö PM, Gemmel P, Böhlenius H (2015) Early development of pure and mixed tree species plantations in Snogeholm, southern Sweden. Scand J For Res 30(4):304–316Google Scholar
  45. Ducey MJ, Knapp RA (2010) A stand density index for complex mixed species forests in the northeastern United States. For Ecol Manag 260(9):1613–1622CrossRefGoogle Scholar
  46. Edgar CB, Burk TE (2001) Productivity of aspen forests in northeastern Minnesota, USA, as related to stand composition and canopy structure. Can J For Res 31:1019–1029CrossRefGoogle Scholar
  47. Eriksson H, Johansson U, Kiviste A (1997) A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scand J For Res 12(2):149–156CrossRefGoogle Scholar
  48. Faliński JB (1986) Vegetation dynamics in temperate lowland primeval forest. Ecological studies in Białowieża forest, Geobotany 8. Junk, DordrechtGoogle Scholar
  49. Fisher RA, Thornton HG, Mackenzie WA (1922) The accuracy of the plating method of estimating the density of bacterial populations. Ann App Biol 9:325–359CrossRefGoogle Scholar
  50. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manag 312:282–292CrossRefGoogle Scholar
  51. Forrester DI, Albrecht AT (2014) Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manag 328:94–102CrossRefGoogle Scholar
  52. Forrester DI, Pretzsch H (2015) On the strength of evidence when comparing ecosystem functions of mixtures with monocultures. For Ecol Manag. doi: 10.1016/j.foreco.2015.08.016 Google Scholar
  53. Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manag 304:233–242CrossRefGoogle Scholar
  54. Füldner K (1995) Zur Strukturbeschreibung in Mischbeständen. Forstarchiv 66:235–240Google Scholar
  55. Gadow Kv (1993) Zur Bestandesbeschreibung in der Forsteinrichtung. Forst und Holz 48(21):602–606Google Scholar
  56. Gadow Kv, Hui GY (2002) Characterizing forest spatial structure and diversity. In: Björk L (ed) Sustainable forestry in temperate regions. Proceedings of the SUFOR international workshop April 7–9, 2002 in Lund, Sweden, pp 20–30Google Scholar
  57. Gadow Kv, Hui GY, Albert M (1998) Das Winkelmass - ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Centralbl ges Forstwesen 115(1):1–9Google Scholar
  58. Gadow Kv, Zhang CY, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Hui GY, Kiviste A, Zhao XH (2012) Forest structure and diversity. In: Pukkala T, Gadow Kv (eds) Continuous cover forestry. Book series managing forest ecosystems, vol 23. Springer, Berlin, pp 29–84CrossRefGoogle Scholar
  59. Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340PubMedPubMedCentralCrossRefGoogle Scholar
  60. Garber SM, Maguire DA (2004) Stand productivity and development in two mixed-species spacing trials in the central Oregon Cascades. For Sci 50:92–105Google Scholar
  61. Garet J, Raulier F, Pothier D, Cumming SG (2012) Forest age class structures as indicators of sustainability in boreal forest: are we measuring them correctly? Ecol Indic 23:202–210CrossRefGoogle Scholar
  62. Getzin S, Dean C, He F, Trofymow JA, Wiegand K, Wiegand T (2006) Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography 29:671–682CrossRefGoogle Scholar
  63. Groot A, Adhikary S, Sharma M, Luckai N, Bell FW, Larocque GR (2014) Effect of species composition on the production rate and efficiency of young Picea glaucaPopulus tremuloides forests. For Ecol Manag 315:1–11CrossRefGoogle Scholar
  64. Gül AU, Misir M, Misir N, Yavuz H (2005) Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterb’s modified competition density rule. For Ecol Manag 214:212–220CrossRefGoogle Scholar
  65. Haara A, Maltamo M, Tokola T (1997) The K-nearest-neighbour method for estimating basal-area diameter distribution. Scand J For Res 12(2):200–208CrossRefGoogle Scholar
  66. Hanewinkel M (2004) Spatial patterns in mixed coniferous even-aged, uneven-aged and conversion stands. Eur J For Res 123:139–155Google Scholar
  67. Hara T (1992) Effects of the mode of competition on stationary size distribution in plant populations. Ann Bot 69(6):509–513Google Scholar
  68. Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Species Biol 8(2–3):75–84CrossRefGoogle Scholar
  69. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  70. Hein S, Dhôte JF (2006) Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp) in mixed stands with beech (Fagus sylvatica L) in northern France. Ann For Sci 63:457–467CrossRefGoogle Scholar
  71. Helms JA (ed) (1998) The dictionary of forestry. Society of American Foresters, BethesdaGoogle Scholar
  72. Huang S, Titus SJ (1993) An index of site productivity for uneven-aged or mixed-species stands. Can J For Res 23(3):558–562CrossRefGoogle Scholar
  73. Huber MO, Sterba H, Bernhard L (2014) Site conditions and definition of compositional proportion modify mixture effects in Picea abiesAbies alba stands. Can J For Res 44(10):1281–1291CrossRefGoogle Scholar
  74. Hui GY, Zhao XH, Zhao ZH, Kv Gadow (2011) Evaluating tree species spatial diversity based on neighborhood relationships. For Sci 57(4):292–300Google Scholar
  75. Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F et al (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66(7):701CrossRefGoogle Scholar
  76. Jaehne S, Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenshaftliches Centralblatt 116:333–345CrossRefGoogle Scholar
  77. Johann K (1993) DESER-Norm 1993 Normen der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten zur Aufbereitung von waldwachstumskundlichen Dauerversuchen. Proc Dt Verb Forstl Forschungsanst, Sek Ertragskd, in Unterreichenbach-Kapfenhardt, pp 96–104Google Scholar
  78. Katholnig L (2012) Growth dominance and Gini-Index in even-aged and in uneven-aged forests, Master thesis, University of Natural Resources and Applied Life Sciences, BoKu, Vienna, 67 pGoogle Scholar
  79. Keller W (1995) Zur Oberhöhenberechnung in Mischbeständen aus standortskundlicher Sicht. Vorträge bei der Tagung d. Sektion Ertragskunde d. Deutschen Verbandes Forstl. Forshungsanst. JoachimstalGoogle Scholar
  80. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver MJ (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 125–141CrossRefGoogle Scholar
  81. Kelty MJ, Cameron IR (1995) Plot designs for the analysis of species interactions in mixed stands. Commonw For Rev 74:322–332Google Scholar
  82. Kennel R (1972) Die Buchendurchforstungsversuche in Bayern Forschber FFA Münschen, 7Google Scholar
  83. Knapp E (1991) Zur Wuchsleistung der Unterbaubuche im ungleichaltrigen Kiefern-Buchen-Mischbestand vor und nach ihrer Übernahme als Hauptbestand auf Standorten des norostdeutschen Tieflandes. Bericht von der Jahrestagung 1991 der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Treis-Karden/Mosel, pp 96–110Google Scholar
  84. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101CrossRefGoogle Scholar
  85. Köhl M, Traub B, Päivinen R (2000) Harmonisation and standardisation in multi-national environmental statistics—mission impossible? Environ Monit Assess 63:361–380CrossRefGoogle Scholar
  86. Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, Corona P (2011) Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2:961–982CrossRefGoogle Scholar
  87. Körner C (2002) Ökologie. In: Sitte P, Weiler EW, Kadereit JW, Bresinsky A, Körner C (eds) Strasburger Lehrbuch für Botanik, 35th edn. Spektrum Akademischer Verlag, Heidelberg, Berlin, pp 886–1043Google Scholar
  88. Kuuluvainen T, Penttinen A, Leinonen K, Nygren M (1996) Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silva Fenna 30:315–328CrossRefGoogle Scholar
  89. Langhammer A (1971) Noen glimt fra blandingsskogen. Tidsskr Skogbruk 79:302–314Google Scholar
  90. Langsæter A (1941) Om tynning i enaldret gran- og furuskog. Meddelelser fra Det norske skogforsøksvesen 8:131–216Google Scholar
  91. Larson BC (1992) Pathways of development in mixed-species stands. In: Kelty MJ, Larson BC, Oliver MJ (eds) The ecology and silviculture of mixed-species forests. Kluwer Academic Publishers, Dordrecht, pp 3–10CrossRefGoogle Scholar
  92. Latham PA, Zuuring HR, Coble DW (1998) A method for quantifying vertical forest structure. For Ecol Manag 104:157–170CrossRefGoogle Scholar
  93. Lee WK, von Gadow K, Chung DJ, Lee JL, Shin MY (2004) DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecol Model 176(1):187–200CrossRefGoogle Scholar
  94. Lei XD, Wang WF, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39(10):1835–1847CrossRefGoogle Scholar
  95. Leikola M (1999) Definition and classification of mixed forests, with a special emphasis on boreal forests. In: Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (eds) Management of mixed-species forest: silviculture and economics. Wageningen, DLO Institute of Forestry and Nature Research, pp 20–28Google Scholar
  96. Lewandowski A, Pommerening A (1997) Zur Beschreibung der Waldstruktur – Erwartete und beobachtete Arten-Durchmischung. Forstw Cbl 116:129–139CrossRefGoogle Scholar
  97. Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. For Ecol Manag 243(1):116CrossRefGoogle Scholar
  98. Liu C, Zhang L, Davis CJ, Solomon DS, Gove JH (2002) A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. For Sci 48(4):653–661Google Scholar
  99. Liu F, Li F, Zhang L, Jin X (2014) Modeling diameter distributions of mixed-species forest stands. Scand J For Res 29(7):653–663CrossRefGoogle Scholar
  100. Lloyd M (1967) Mean crowding. J Anim Ecol 36:1–30CrossRefGoogle Scholar
  101. Long JN, Daniel TW (1990) Assessment of growing stock in uneven-aged stands. West J Appl For 5:93–96Google Scholar
  102. Lotka AJ (1932) Contribution to the mathematical theory of capture: I Conditions for capture. Proc Natl Acad Sci USA 18(2):172PubMedPubMedCentralCrossRefGoogle Scholar
  103. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598CrossRefGoogle Scholar
  104. MacFarlane DW, Green EJ, Burkhart HE (2000) Population density influences assessment and application of site index. Can J For Res 30(9):1472–1475CrossRefGoogle Scholar
  105. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  106. Maltamo M, Kangas A (1998) Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can J For Res 28(8):1107–1115CrossRefGoogle Scholar
  107. McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. For Ecol Manag 218:1–24CrossRefGoogle Scholar
  108. Menalled FD, Kelty MJ, Ewel JJ (1998) Canopy development in tropical tree plantations: a comparison of species mixtures and monocultures. For Ecol Manag 104:249–263CrossRefGoogle Scholar
  109. Mitscherlich G (1970) Wald, Wachstum und Umwelt. 1. Band, Form und Wachstum von Baum und Bestand. JD Sauerländer’s Verlag, Frankfurt am MainGoogle Scholar
  110. Morisita M (1959) Measuring of the dispersion and analysis of distribution patterns. Mem Fac Sci Kyushu Univ Ser E Biol 2:215–235Google Scholar
  111. Ngo Bieng MA, Perot T, de Coligny F, Goreaud F (2013) Spatial pattern of trees influences species productivity in a mature oak–pine mixed forest. Eur J For Res 132:841–850CrossRefGoogle Scholar
  112. Nieuwenhuis M (2000) Terminology of forest management. IUFRO World Series Vol 9-en IUFRO 40407 SilvaPlan and SilvaVocGoogle Scholar
  113. Nigh G (2002) Site index conversion equations for mixed trembling aspen and white spruce stands in northern British Columbia. Silva Fenn 36(4):789–797CrossRefGoogle Scholar
  114. O’Hara KL, Lähde E, Laiho O, Norokorpi Y, Saksa T (2001) Leaf area allocation as a guide to stocking control in multi-aged, mixed-conifer forests in southern Finland. Forestry 74:171–185CrossRefGoogle Scholar
  115. Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New YorkGoogle Scholar
  116. Oliver C, Boydak M, Segura G, Bare B (1999) Forest organization, management and policy. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge University Press, Cambridge, pp 556–598CrossRefGoogle Scholar
  117. Pach M, Podlaski R (2015) Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands. Ecol Res 30(2):367–384CrossRefGoogle Scholar
  118. Palahí M, Pukkala T, Kasimiadis D, Poirazidis K, Papageorgiou AC (2008) Modelling site quality and individual-tree growth in pure and mixed Pinus brutia stands in north-east Greece. Ann For Sci 65(5):501CrossRefGoogle Scholar
  119. Paluch JG (2007) The spatial pattern of a natural European beech (Fagus sylvatica L)–silver fir (Abies alba Mill) forest: a patch-mosaic perspective. For Ecol Manag 253:161–170CrossRefGoogle Scholar
  120. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180CrossRefGoogle Scholar
  121. Parker GG, Brown MJ (2000) Forest canopy stratification: is it useful? Am Nat 155:473–484PubMedCrossRefGoogle Scholar
  122. Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, CambridgeGoogle Scholar
  123. Pielou EC (1959) The use of point to plant distances in the study of the pattern of plant populations. J Ecol 47:607–613CrossRefGoogle Scholar
  124. Pielou EC (1977) Mathematical ecology. Wiley, New YorkGoogle Scholar
  125. Pinto PE, Gégout JC, Hervé JC, Dhôte JF (2008) Respective importance of ecological conditions and stand composition on Abies alba Mill dominant height growth. For Ecol Manag 255:619–629CrossRefGoogle Scholar
  126. Poage NJ, Marshall DD, McClellan MH (2007) Maximum stand density index of 40 western Hemlock-Sitka spruce stands on southeast Alaska. West J Appl For 22(2):99–104Google Scholar
  127. Podlaski R, Roesch FA (2014) Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: a two-component mixture model approach. Math Biosci 249:60–74PubMedCrossRefGoogle Scholar
  128. Pommerening A (2002) Approaches to quantifying forest structures. Forestry 75(3):305–324CrossRefGoogle Scholar
  129. Pretzsch H (1995a) Zum Einfluss des Baumverteilungsmusters auf den Bestandeszuwachs. AFJZ 166(9/10):190–201Google Scholar
  130. Pretzsch H (1995b) Analyse und Reproduktion räumlicher Bestandesstrukturen Methodische Überlegungen am Beispiel niedersächsischer Buchen-Lärchen-Mischbestände. Centralblatt für das gesamte Forstwesen 112(2):91–117Google Scholar
  131. Pretzsch H (2002) Dichte und Wachstum in Rein- und Mischbeständen aus Fichte und Buche. Jahrestagung der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten in Schwarzburg, Tagungsbericht, S 84–101Google Scholar
  132. Pretzsch H (2003) The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L] Karst) and common beech (Fagus sylvatica L). J For Sci 49:491–501Google Scholar
  133. Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function. Ecol Stud 176. Springer, Berlin, pp 41–64CrossRefGoogle Scholar
  134. Pretzsch H (2009) Forest dynamics, growth and yield. Springer, BerlinCrossRefGoogle Scholar
  135. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264CrossRefGoogle Scholar
  136. Pretzsch H, Biber P (2005) A re-evaluation of Reineke’s rule and stand density index. For Sci 51:304–320Google Scholar
  137. Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40:370–384CrossRefGoogle Scholar
  138. Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  139. Pretzsch H, Schütze G (2014) Size-structure dynamics of mixed versus pure forest stands. For Syst 23(3):560–572Google Scholar
  140. Pretzsch H, Schütze G (2015) Effect of tree species mixing on the size structure, density and yield forest stands. Eur J For Res. doi: 10.1007/s10342-015-0913-z Google Scholar
  141. Pretzsch H, Biber P, Ďrský J (2002) The single tree based stand simulator SILVA Construction, application and evaluation. For Ecol Manag 162:3–21CrossRefGoogle Scholar
  142. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European been along an ecological gradient. Ann For Sci 67:712CrossRefGoogle Scholar
  143. Pretzsch H, Dieler J, Seifert T, Rötzer T (2012a) Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L] Karst) and European beech (Fagus sylvatica [L]) in stands with different spatial mixing patterns. Trees 26:1343–1360CrossRefGoogle Scholar
  144. Pretzsch H, Matthew C, Dieler J (2012b) Allometry of tree crown structure. Relevance for space occupation at the individual plant level and for self-thinning at the stand level. In: Matyssek R, Schnyder H, Oßwald W, Ernst D, Ch Munch J, Pretzsch H (eds) Growth and defence in plants. Ecol Stud 220. Springer, Berlin, pp 287–310CrossRefGoogle Scholar
  145. Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt) Liebl and Quercus robur L) and European beech (Fagus sylvatica L) along an ecological gradient. Eur J For Res 132(2):263–280CrossRefGoogle Scholar
  146. Pretzsch H, Biber P, von Gadow K (2015a) Ernst Assmann: a German pioneer in forest production ecology and quantitative silviculture. Eur J For Res 134(3):391–402CrossRefGoogle Scholar
  147. Pretzsch H, del Río M, Ammer Ch, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015b) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L) and European beech (Fagus sylvatica L) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947CrossRefGoogle Scholar
  148. Prodan M (1968) Forest biometrics. Pergamon Press, OxfordGoogle Scholar
  149. Puettmann KJ, Hibbs DE, Hann DW (1992) The dynamics of mixed stands of Alnus rubra and Pseudotsuga menziesii: extension of size-density analysis to species mixture. J Ecol 80(3):449–458CrossRefGoogle Scholar
  150. Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638Google Scholar
  151. Reyes-Hernandez V, Comeau PG, Bokalo M (2013) Static and dynamic maximum size–density relationships for mixed trembling aspen and white spruce stands in western Canada. For Ecol Manag 289:300–311CrossRefGoogle Scholar
  152. Río M, Condés S, Pretzsch H (2014) Analyzing size-symmetric vs. size-asymmetric and intra-vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For Ecol Manage 325:90–98CrossRefGoogle Scholar
  153. Ritchie M, Zhang J, Hamilton T (2012) Effects of stand density on top height estimation for ponderosa pine. West J Appl For 27(1):18–24Google Scholar
  154. Rivoire M, Moguedec G (2012) A generalized self-thinning relationship for multi-species and mixed-size forests. Ann For Sci 69(2):207–219CrossRefGoogle Scholar
  155. Rötzer T (2013) Mixing patterns of tree species and their effects on resource allocation and growth in forest stands. Nova Acta Leopoldina NF 114:239–254Google Scholar
  156. Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E (2007) Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect Plant Ecol 9:53–70CrossRefGoogle Scholar
  157. Schütz J-Ph (1999) The principle of functioning of mixed fores stands, experience of temperate Central European forest conditions. In: Olsthoorn et al (ed) Management of mixed-species forest: silviculture and economics IBN Scientific Contributions 15, Wageningen, pp 219–234Google Scholar
  158. Schwinning S, Weiner S (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455CrossRefGoogle Scholar
  159. Seidel D, Leuschner C, Scherber C, Beyer F, Wommelsdorf T, Cashman MJ, Fehrmann L (2013) The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. For Ecol Manag 310:366–374CrossRefGoogle Scholar
  160. Shannon CE (1949) The mathematical theory of communication. In: Shannon CE, Weaver W (eds) The mathematical theory of communication. University of Illinois Press, Urbana, pp 3–91Google Scholar
  161. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  162. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81(1):13–31CrossRefGoogle Scholar
  163. Skovsgaard, JP O’Connor, E Graversgaard, HC Hochbichler, E Mohni, C Nicolescu N, Niemistö, P Pelleri, F Spiecker, H Stefancik I, Övergaard R (2006) Procedures for forest experiments and demonstration plots. Scientific report from a COST E42 meeting in Denmark 28–30 Nov 2006Google Scholar
  164. Smith DM (1986) The practice of silviculture. Wiley, New YorkGoogle Scholar
  165. Staudhammer CL, LeMay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Can J For Res 31:1105–1115CrossRefGoogle Scholar
  166. Sterba H (1987) Estimating potential density from thinning experiments and inventory data. For Sci 33(4):1022–1034Google Scholar
  167. Sterba H (1991) Zur Schätzung der Flächenanteile der Baumarten in Wuchsreihen. Centralbl. ges. Forstwesen 108(3):297–308Google Scholar
  168. Sterba H (1996) Oberhöhendefinition in gleichaltrigen Mischbeständen. Schweiz Z Forstw 147:109–120Google Scholar
  169. Sterba H (1998) The precision of species proportion by area when estimated by angle counts and yield tables. Forestry 71(1):25–32CrossRefGoogle Scholar
  170. Sterba H, Monserud RA (1993) The maximum density concept applied to uneven-aged mixed-species stands. For Sci 39:432–452Google Scholar
  171. Sterba H, del Río M, Brunner A, Condes S (2014) Effect of species proportion definition on the evaluation of growth in pure vs mixed stands. For Syst 23(3):547–559Google Scholar
  172. Szwagrzyk J, Czerwczak M (1993) Spatial patterns of trees in natural forests of East-Central Europe. J Veg Sci 4:469–476CrossRefGoogle Scholar
  173. Szwagrzyk J, Gazda A (2007) Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J Veg Sci 18(4):555–562CrossRefGoogle Scholar
  174. Temesgen H, Gadow Kv (2004) Generalised height-diameter models—an application for major tree species in complex stands of interior British Columbia. Eur J For Res 123:45–51CrossRefGoogle Scholar
  175. Toïgo M, Vallet P, Perot T, Bontemps JD, Piedally C, Courbaud B (2015) Overyielding in mixed forests decreases with site productivity. J Ecol 103:502–512CrossRefGoogle Scholar
  176. Tomé J, Tomé M, Barreiro S, Paulo JA (2006) Age-independent difference equations for modelling tree and stand growth. Can J For Res 36:1621–1630CrossRefGoogle Scholar
  177. Trasobares A, Pukkala T, Miina J (2004a) Growth and yield model for uneven-aged mixtures of Pinus sylvestris L and Pinus nigra Arn in Catalonia, north-east Spain. Ann For Sci 61:9–24CrossRefGoogle Scholar
  178. Trasobares A, Tomé M, Miina J (2004b) Growth and yield model for Pinus halepensis Mill in Catalonia, north-east Spain. For Ecol Manag 203:49–62CrossRefGoogle Scholar
  179. Vallet P, Perot T (2011) Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J Veg Sci 22(5):932–942CrossRefGoogle Scholar
  180. van Soest J, Ayral P, Schober R, Hummel FC (1965) The standardization of symbols in forest mensuration. International Union of Forestry Research Organizations Approved by IUFRO 1956, originally published 1959, and reprinted 1965 by University of Maine as Technical Bulletin no 15 of Maine Agricultural Experiment StationGoogle Scholar
  181. Vanclay JK (1992) Assessing site productivity in tropical moist forests: a review. For Ecol Manag 54:257–287CrossRefGoogle Scholar
  182. Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CAB International, WallingfordGoogle Scholar
  183. Vanclay JK (2006) Experiment designs to evaluate inter- and intra-specific interactions in mixed plantings of forest trees. For Ecol Manag 233:366–374CrossRefGoogle Scholar
  184. Vanclay JK, Henry NB (1988) Assessing site productivity of indigenous cypress pine forest in southern Queensland. Commonw For Rev 67:53–64Google Scholar
  185. Vandermeer J (1989) The ecology of Intercropping. Cambrige University Press, CambridgeCrossRefGoogle Scholar
  186. Varga P, Chen HYH, Klinka K (2005) Tree-size diversity between single- and mixed-species stands in three types in western Canada. Can J For Res 35:593–601CrossRefGoogle Scholar
  187. Vilà M, Inchausti P, Vayreda J, Barrantes O, Gracia C, Ibáñez JJ, Mata T (2005) Confounding factors of the association between tree diversity and stemwood production. In: Scherer-Lorenzen M, Körner C, Schulze ED (eds) Forest diversity and function. Ecol Stud 176. Springer, Berlin, pp 65–86CrossRefGoogle Scholar
  188. Vilà M, Vayreda J, Comas L, Ibáñez JJ, Mata T, Obón B (2007) Species richness and wood production: a positive association in Mediterranean forests. Ecol Let 10:241–250CrossRefGoogle Scholar
  189. Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Haase J, Kunstler G, Schelhaas M, Trasobares A (2013) Disentangling biodiversity and climatic determinants of wood production. PLoS ONE 8:e53530PubMedPubMedCentralCrossRefGoogle Scholar
  190. Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560CrossRefGoogle Scholar
  191. von Oheimb G, Westphal Ch, Tempel H, Härdtle W (2005) Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, north-east Germany). For Ecol Manag 212:253–263CrossRefGoogle Scholar
  192. Vospernik S, Sterba H (2001) Neue Methoden zum Bonitieren. Österr Forstzeitung 112:18–19Google Scholar
  193. Vospernik S, Sterba H (2014) Do competition-density rule and self-thinning rule agree? Ann For Sci 72(3):379–390CrossRefGoogle Scholar
  194. Waskiewicz J, Kenefic L, Weiskittel A, Seumour R (2013) Species mixture effects in northern red oak-eastern white pine stands in Maine, USA. For Ecol Manag 298:71–81CrossRefGoogle Scholar
  195. Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5(11):360–364PubMedCrossRefGoogle Scholar
  196. Weiner J, Freckleton RP (2010) Constant final yield. Ann Rev Ecol Evol Syst 41:173–192CrossRefGoogle Scholar
  197. Weiskittel AR, Hann DW, Hibbs DE, Lam TY, Bluhm AA (2009) Modeling top height growth of red alder plantations. For Ecol Manag 258:323–331CrossRefGoogle Scholar
  198. Weller DE (1987) A reevaluation of the -3/2 power rule of plant self-thinning. Ecol Monogr 57(1):23CrossRefGoogle Scholar
  199. Whittaker RJ (2010) Meta-analyses and mega-mistakes: calling time on meta-analysis of the species richness–productivity relationship. Ecology 91:2522–2533PubMedCrossRefGoogle Scholar
  200. Wiedemann E (1951) Ertragskundliche und waldbauliche Grundlagen der Forstwirtschaft. JD Sauerländer‘s Verlag, Frankfurt am MainGoogle Scholar
  201. Woodall CW, Miles PD, Vissage JS (2005) Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For Ecol Manag 216(1–3):367–377CrossRefGoogle Scholar
  202. Woodall CW, D’Amato AW, Bradford JB, Finley AO (2011) Effects of stand and inter-specific stocking on maximizing standing tree carbon stocks in the eastern United States. For Sci 57(5):365–378Google Scholar
  203. Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manag 13:149–166CrossRefGoogle Scholar
  204. Zeide B (2001) Thinning and growth: a full turnaround. J For 99(1):20–25Google Scholar
  205. Zenner EK, Hibbs D (2000) A new method for modeling the heterogeneity of forest structure. For Ecol Manag 129:75–87CrossRefGoogle Scholar
  206. Zenner EK, Peck JE, Hobi ML, Commarmot B (2015) The dynamics of structure across scale in a primaeval European beech stand. Forestry 88:180–189CrossRefGoogle Scholar
  207. Zhang L, Bi H, Gove JH, Heath LS (2005) A comparison of alternative methods for estimating the self-thinning boundary line. Can J For Res 35:1507–1514CrossRefGoogle Scholar
  208. Zhang Y, Chen HYH, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100(3):742–749CrossRefGoogle Scholar
  209. Ziegler SS (2000) A comparison of structural characteristics between old-growth and postfire second-growth hemlock–hardwood forests in Adirondack Park, New York, USA. Glob Ecol Biogeogr 9:373–389CrossRefGoogle Scholar
  210. Zingg A (1994) Top height in mixed stands. Their definition and calculation. In: Costa MEP, Preuhsler T (eds) Mixed stands research plots, measurements and results, models. Universidade Tecnica de Lisboa, Instituto Superior de Agronomia, Lisboa, pp 67–80Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Miren del Río
    • 1
    • 2
    Email author
  • Hans Pretzsch
    • 3
  • Iciar Alberdi
    • 1
  • Kamil Bielak
    • 4
  • Felipe Bravo
    • 2
    • 5
  • Andreas Brunner
    • 6
  • Sonia Condés
    • 7
  • Mark J. Ducey
    • 8
  • Teresa Fonseca
    • 9
  • Nikolas von Lüpke
    • 10
  • Maciej Pach
    • 11
  • Sanja Peric
    • 12
  • Thomas Perot
    • 13
  • Zahera Souidi
    • 14
  • Peter Spathelf
    • 15
  • Hubert Sterba
    • 16
  • Martina Tijardovic
    • 12
  • Margarida Tomé
    • 17
  • Patrick Vallet
    • 13
  • Andrés Bravo-Oviedo
    • 1
    • 2
  1. 1.Department of Silviculture and Forest ManagementINIA Forest Research Centre INIA-CIFORMadridSpain
  2. 2.Sustainable Forest Management Research InstituteUniversidad de Valladolid & INIAMadrid/PalenciaSpain
  3. 3.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany
  4. 4.Department of SilvicultureWarsaw University of Life SciencesWarsawPoland
  5. 5.ETS de Ingenierías AgrariasUniversity of ValladolidPalenciaSpain
  6. 6.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  7. 7.Department of Natural Systems and Resources, School of ForestryTechnical University of MadridMadridSpain
  8. 8.Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamUSA
  9. 9.Department of Forest Sciences and Landscape ArchitectureUniversidade de Trás-os-Montes e Alto DouroVila RealPortugal
  10. 10.Norwegian Institute of Bioeconomy ResearchÅsNorway
  11. 11.Department of Silviculture, Institute of Forest Ecology and SilvicultureUniversity of AgricultureKrakówPoland
  12. 12.Croatian Forest Research InstituteJastrebarskoCroatia
  13. 13.Irstea - Unité Ecosystèmes ForestiersNogent-Sur-VernissonFrance
  14. 14.Université de MascaraMascaraAlgeria
  15. 15.Faculty of Forest and EnvironmentEberswalde University for Sustainable DevelopmentEberswaldeGermany
  16. 16.Department of Forest and Soil ScienceBOKU University of Natural Resources and Life SciencesViennaAustria
  17. 17.Forest Research Center, School of AgricultureUniversity of LisbonLisbonPortugal

Personalised recommendations