European Journal of Forest Research

, Volume 135, Issue 1, pp 51–67 | Cite as

A review on plant diversity and forest management of European beech forests

  • E. D. Schulze
  • G. Aas
  • G. W. Grimm
  • M. M. Gossner
  • H. Walentowski
  • C. Ammer
  • I. Kühn
  • O. Bouriaud
  • K. von Gadow
Review

Abstract

The impact of historical and present drivers on forest biodiversity is poorly understood. A better understanding is mandatory to ensure conservation and appropriate management of biodiversity and ecosystem functions in the face of climate warming and increasing demand for wood products. Here, we assess forest management strategies for maintaining plant biodiversity in Central European beech forests, with a focus on Germany. We show that (1) diversity of the German vascular plant flora increased exponentially during the Holocene reaching 3874 species mainly through apomictic and hybrid speciation. Vascular plant species confined to forests comprise about 10 % of this flora. No loss in vascular plants restricted to forests occured over the past 250 years despite of forest management; (2) the indigenous arboreal flora has a low diversity (64 tree species) compared with other continents due to environmental changes in the last 2 million years; (3) forest management has maintained a high plant diversity in the past. It should be an aim of silviculture to ensure this in the future; and (4) only 22 of the indigenous tree species are commercially used; nine of these commercially used species are threatened by diseases. We introduce the concept of palaeo-neophytes to address genera that existed in Central Europe during the latest Cenozoic. The introduction of species of palaeo-neophytic genera and sub-Mediterranean species is discussed as a measure to buffer negative effects on native species caused by climate change and spread of novel diseases.

Keywords

Temperate deciduous forests Management Nature conservation Tree diversity Palaeo-history Pest species Climate change 

Supplementary material

10342_2015_922_MOESM1_ESM.doc (454 kb)
Supplementary material 1 (DOC 454 kb)

References

  1. Aas G (1993) Taxonomical impact of morphological variation in Quercus robur and Q. petraea—a contribution to the hybrid controversy. Ann Sci For 50(Suppl1):107s–113sCrossRefGoogle Scholar
  2. Albert K, Ammer C (2012) Biomasseproduktivität ausgewählter europäischer Mittel- und Niederwaldbestände—Ergebnisse einer vergleichenden Metaanalyse. Allgemeine Forst-und Jagdzeitung 183:225–237Google Scholar
  3. Alexander KNA (1998) The links between forest history and biodiversity: the invertebrate fauna of ancient pasture-woodlands in Britain and its conservation. In: Kirby KJ, Watkins C (eds) The ecological history of European forests: based on presentations given at the International conference on advances in forest and woodland history. University of Nottingham, September 1996. CAB International, Wallingford, pp 73–80Google Scholar
  4. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  5. Allen CD, Breashears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, Article 129:1–27Google Scholar
  6. Anderegg WRL, Schwalm C, Biondi F, Camerero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–532PubMedCrossRefGoogle Scholar
  7. Assmann T (1999) The ground beetle fauna of ancient and recent woodlands in the lowlands of north-west Germany (Coleoptera, Carabidae). Biodiv Conserv 8:1499–1517CrossRefGoogle Scholar
  8. Behboud P, Bökel F, Brüsch C, Reiner A, Schützeck S (2013) Winterstürme in Europa. Hirstorie 1703 bis 2012. AON Benfield Analytics, HamburgGoogle Scholar
  9. Blaser S, Prati D, Senn-Irlet B, Fischer M (2013) Effects of forest management on the diversity of deadwood-inhabiting fungi in Central Europe forests. For Ecol Manag 304:42–48CrossRefGoogle Scholar
  10. Boch S, Prati D, Hessenmöller D, Schulze ED, Fischer M (2013a) Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. Plos One 8:e55641CrossRefGoogle Scholar
  11. Boch S, Prati D, Müller J, Socher S et al (2013b) High plant species richness indicates management-related disturbances rather than conservation status of forests. Basic Appl Ecol 14:496–505CrossRefGoogle Scholar
  12. Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  13. Bolte A, Ammer C, Löf M, Nabuurs G-J, Schall P, Spathelf P (2010) Adaptive forest management: a prerequisite for sustainable forestry in the face of climate change. In: Spathelf P (ed) Sustainable forest management in a changing world: a European perspective. Managing forest ecosystems, vol 19. Springer, Dordrecht, pp 115–139Google Scholar
  14. Bouchal J, Zetter R, Grímsson F, Denk T (2014) Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am J Bot 101:1332–1349PubMedCrossRefGoogle Scholar
  15. Bouget C, Larrieu L, Nusillard B, Parmain G (2013) In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers Conserv 22:2111–2130CrossRefGoogle Scholar
  16. Brunet J, Fritz Ö, Richnau G (2010) Biodiversity in European beech forest—a review with recommendations for sustainable forest management. Ecol Bull 53:77–94Google Scholar
  17. Burschel P, Huss J (2003) Grundriss des Waldbaus. Ulmer Verlag, StuttgartGoogle Scholar
  18. Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282PubMedCrossRefGoogle Scholar
  19. Curtu AL, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evol Biol 9:284PubMedPubMedCentralCrossRefGoogle Scholar
  20. Czaja A (2000) Pseudotsuga jechorehiae sp. nova, der erste fossile Nachweis der Gattung Pseudotsuga Carrière nach Zapfen aus dem Miozän der Oberlausitz, Deutschland. Feddes Repert 111:129–134CrossRefGoogle Scholar
  21. De Bakker D, Maelfait J-P, Hendrickx F, De Vos B (2000) A first analysis on the relationship between forest soil quality and spider (Araneae) communities of Flemish forest stands. Ekologia (Bratislava) 19:45–58Google Scholar
  22. De Bakker D, Maelfait J-P, Baertt J-B, Hendrickx F (2001) Spider diversity and community structure in the forest of Ename (Eastern Flanders Belgium). Bull Inst Sci Nat Belg 71:45–54Google Scholar
  23. Denk T, Grimm GW (2009) The biogeographic history of beech trees. Rev Palaeobot Palynol 158:83–100CrossRefGoogle Scholar
  24. Denk T, Grimm GW (2010) The oaks of Western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366Google Scholar
  25. Denk T, Grímsson F, Zetter R, Símonarson LA (2011) Late Cainozoic Floras of Iceland. 15 million years of vegetation and climate history in the Northern North Atlantic. Topics in geobiology, vol 35. Springer, DordrechtGoogle Scholar
  26. Descender K, Ervynck A, Tack G (1999) Beetle diversity and historical ecology of woodlands in Flanders. Belg J Zool 129:139–156Google Scholar
  27. Duguid MC, Ashton MS (2013) A meta-analysis of the effect of forest management for timber on understory plant species diversity in temperate forests. For Ecol Manag 303:81–90CrossRefGoogle Scholar
  28. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen. Ulmer, StuttgartGoogle Scholar
  29. Engelmark O, Sjöberg K, Andersson B, Rosvall O, Ågren GI, Baker WL, Barklund P, Björkman C, Despain DG, Elfving B, Ennos RA, Karlman M, Knecht MF, Knight DH, Ledgard NJ, Lindelöw A, Nilsson C, Peterken GF, Sörlin S, Sykes MT (2001) Ecological effects and management aspects of an exotic tree species: the case of lodgepole pine in Sweden. For Ecol Manag 141:3–13CrossRefGoogle Scholar
  30. Fares S, Scarascia Mugnozza G, Corona P, Palahi M (2015) Sustainability: five steps for managing Europe’s forests. Nature 519:407–409PubMedCrossRefGoogle Scholar
  31. Feurdean A, Marinova E, Nielsen AB et al (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963CrossRefGoogle Scholar
  32. Fischer M (1994) Exkursionsflora von Österreich. Ulmer Verlag, Stuttgart. ISBN 3-8001-3461-6Google Scholar
  33. Fischer M, Bossdorf O, Gockel S et al (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485CrossRefGoogle Scholar
  34. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madorff LC, McCraw L, Gurr SJ (2010) Emerging fungal threats to animals, plant and ecosystem health. Nature 484:194–196Google Scholar
  35. Florin R (1963) The distribution of conifer and taxed genera in time and space. Acta Horti Bergiani 20:121–312Google Scholar
  36. Franc N, Gotmark F (2008) Openness in management: hands-off vs partial cutting in conservation forests, and the response of beetles. Biol Conserv 141:2310–2321CrossRefGoogle Scholar
  37. Fraser LH, Pither J, Jentsch A et al (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Nature 349:302–305Google Scholar
  38. Fritzlar F, Nöllert A, Westhus W, Brückner S (2011) Rote Liste der gefährdeten Tier- und Pflanzenarten, Pflanzengesellschaften und Biotope Thüringens. Naturschutzreport 26, JenaGoogle Scholar
  39. German Biodiversity Strategy (2007) Nationale Strategie zur Biologischen Vielfalt. BMU, BerlinGoogle Scholar
  40. Global Biodiversity Assessment (1995) UNEP. Cambridge University Press, Cambridge, 1140 ppGoogle Scholar
  41. Goldmann K, Schöning I, Buscot F, Wubet T (2015) Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Front Microbiol. doi:10.3389/fmicb.2015.01300
  42. Gömöry D, Paule L (2010) Reticulate evolution patterns in western-Eurasian beeches. Bot Helv 120:63–74CrossRefGoogle Scholar
  43. Gömöryová E, Ujházy K, Martinák M, Gömery D (2013) Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest. Appl Soil Ecol 68:10–19CrossRefGoogle Scholar
  44. Gossner MM (2009) Light intensity affects spatial distribution of Heteroptera in deciduous forests. Eur J Entomol 106:241–252CrossRefGoogle Scholar
  45. Gossner MM, Getzin S, Lange M, Pašalić E, Türke M, Wiegand K, Weisser WW (2013a) The importance of heterogeneity revisited from a multiscale and multitaxa approach. Biol Conserv 166:212–220CrossRefGoogle Scholar
  46. Gossner MM, Lachat T, Brunet J, Isacsson G, Bouget C, Brustel H, Brandl R, Weisser WW, Müller J (2013b) Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv Biol 27:605–614PubMedCrossRefGoogle Scholar
  47. Gossner MM, Schall P, Ammer C, Ammer U, Engel K, Schubert H, Simon U, Utschick H, Weisser WW (2014) Forest management intensity measures as alternative to stand properties for quantifying effects on biodiversity. Ecosphere 5, Article 113Google Scholar
  48. Grimm GW, Denk T (2014) The Colchic region as refuge for relict tree lineages: cryptic speciation in field maples. Turk J Bot. doi:10.3906/bot-1403-87 Google Scholar
  49. Grimm GM, Denk T, Hemleben V (2007) Evolutionary history and systematic of Acer section Acer—a case study of low-level phylogenetics. Plant Syst Evol 267:215–253CrossRefGoogle Scholar
  50. Grímsson F, Zetter R, Grimm GW, Karrup-Pedersen G, Pedersen AK, Denk T (2014) Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler’s and Chaney’s Arcto-tertiary hypothesis. Plant Syst Evol 301:809–832PubMedPubMedCentralCrossRefGoogle Scholar
  51. Haber W (2011) Landwirtschaft. In: Konold W, Böker R, Hampicke U (eds) Handbuch Naturschutz und Landschaftspflege, vol 25. Wiley VCH, Weinheim, pp 2–154Google Scholar
  52. Halme P, Toivanen T, Honkanen M, Kotiaho JS, Mönkkönen M, Timonen J (2010) Flawed meta-analysis of biodiversity effects of forest management. Conserv Biol 24:1154–1156PubMedCrossRefGoogle Scholar
  53. Hand ML, Koltunow AMGC (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hasel K, Schwarz, E (2006) Forstgeschichte. Verlag Kessel, RemagenGoogle Scholar
  55. Hartmann G, Nienhaus F, Butin H (1995) Farbatlas Waldschäden. Ulmer, HohenheimGoogle Scholar
  56. Heidingsfelder A, Knoke T (2004) Douglasie versus Fichte: Ein betriebswirtschaftlicher Leistungsvergleich auf der Grundlage des Provenienzversuches Kaiserslautern. Sauerländer’s: Schriften zur Forstökonomie, Band 26Google Scholar
  57. Hempel W (1990) Untersuchungen zur Einbürgerung anthropochorer Arten im sächsischen Raum—Introduktionsverhalten und Klassifizierung. Gleditschia 18:135–141Google Scholar
  58. Hermann, RK (1985) The genus Pseudotsuga: ancestral history and past distribution. Special publication 2b. Forest research Laboratory. Oregon State University, CorvallisGoogle Scholar
  59. Heybroek HM (2015) The elm, tree of milk and wine. iForest 8:181–186CrossRefGoogle Scholar
  60. Hickler Th, Bolte A, Hartard B et al (2014) Folgen des Klimawandels für die Biodiversität in Wald und Forst. In: Moosbrugger V, Brasseur G, Schaller M, Stribtny B (eds) Klimawandel und Biodiversität: Folgen für Deutschland, 2nc edn. WBG, Darmstadt, pp 164–221Google Scholar
  61. Hobi ML, Commarmot B, Bugmann H (2015) Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). J Veg Sci 26:323–336CrossRefGoogle Scholar
  62. Hojsgaard D, Klatt S, Baier R, Carman GC, Hörandl E (2014) Taxonomy and biogeography of apomixis and associated biodiversity characteristics. Crit Rev Plant Sci 33:414–427CrossRefGoogle Scholar
  63. Horak J, Rebl K (2013) The species richness of click beetles in ancient pasture woodland benefits from a high level of sun exposure. J Insect Conserv 17:307–318CrossRefGoogle Scholar
  64. Hulvey KB, Hobbs RJ, Standish RJ, Lindenmayer DB, Lach L, Perring MP (2013) Benefits of tree mixes in carbon planting. Nat Clim Change 3:869–874CrossRefGoogle Scholar
  65. IPCC-WG II (2014) Climate change 2014. Impacts, adaptations and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  66. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848PubMedCrossRefGoogle Scholar
  67. Joppa LN, Visconti P, Jenkins CN, Pimm SL (2013) Achieving the convention on biological diversity’s goals for plant conservation. Science 341:1100–1103PubMedCrossRefGoogle Scholar
  68. Kegel B (2013) Die Ameise als Tramp; von biologischen Invasionen. Dumont Verlag, KölnGoogle Scholar
  69. Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101CrossRefGoogle Scholar
  70. Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 80:42–54Google Scholar
  71. Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Bütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. Schr.-Reihe f. Vegetationskunde 28:21–187Google Scholar
  72. Kunzmann L (2014) On the fossil history of Pseudotsuga Carr. (Pinaceae) in Europe. Palaeobiodivers Palaeoenviron 94:393–409CrossRefGoogle Scholar
  73. Lang G (1994) Quartäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, JenaGoogle Scholar
  74. Lange M, Türke M, Pašalić E, Boch S, Hessenmöller D, Müller J, Prati D, Socher SA, Fischer M, Weisser WW, Gossner MM (2014) Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. For Ecol Manag 329:166–176CrossRefGoogle Scholar
  75. Latham RE, Ricklefs RE (1993) Continental comparisons of temperate-zone tree species diversity. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 294–316Google Scholar
  76. Lavender DP, Hermann RK (2013) Douglas fir: the genus Pseudotsuga. Oregon State University, ISBA 978-0-615-97995-3 Open Access http://hdl.handle.net/157/47168
  77. Lazaruk LW, Kernaghan G, Macdonald SE, Khasa D (2005) Effects of partial cutting on the ectomycorrhizae of Picea glauca forests in northwestern Alberta. Can J For Res 35:1442–1454CrossRefGoogle Scholar
  78. Leopoldina (2014) Herausforderungen und Chancen der integrativen Taxonomie für Forschung und Gesellschaft: Taxonomische Forschung im Zeitalter der OMICS-Technologien. Leopoldina, Nationale Akademie der Wissenschaften, Halle/SaaleGoogle Scholar
  79. Lindenmayer DB, Laurance WF, Franklin JF (2012) Global decline in large old trees. Science 338:1305–1306PubMedCrossRefGoogle Scholar
  80. Lockwood JD, Aleksic JM, Zou J, Wang J, Liu J, Renner SS (2013) A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Mol Phylogenet Evol 69:717–727PubMedCrossRefGoogle Scholar
  81. Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, JenaGoogle Scholar
  82. Manchester SR (1999) Biogeographical relationships of North American Tertiary floras. Ann Mo Bot Gard 86:472–522CrossRefGoogle Scholar
  83. Manchester SR, Chen ZD, Lu AM, Uemura K (2009) East Asian endemic seed plant genera and their palaeogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42CrossRefGoogle Scholar
  84. Manning P, Gossner MM, Bossdorf O et al (2014) Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96:1492–1501CrossRefGoogle Scholar
  85. Mayer W, Pfefferkorn-Dellali V, Türk R, Dullinger S, Mirtl M, Dirnböck T (2013) Significant decrease in epiphytic lichen diversity in a remote area in the European Alps, Austria. Basic Appl Ecol 14:396–403CrossRefGoogle Scholar
  86. McIntyre DJ (1991) Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Tertiary Fossil Forest of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. In: Christie RL, McMillan NJ (eds) Geological Survey of Canada. Bulletin 403:83–97Google Scholar
  87. McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian High Arctic. Ann Mo Bot Gard 86:523–545CrossRefGoogle Scholar
  88. Meinunger L (2011) Rote Liste der Flechten (Lichenes) Thüringens. In: Fritzlar F, Nöllert A, Westhus W, Brückner S (eds) Rote Listen Thüringens. Naturschutzreport 26. TULG, Jena, pp 417–438Google Scholar
  89. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging mega-disturbances. Science 349:823–826PubMedCrossRefGoogle Scholar
  90. Mitchell RJ, Beaton JK, Bellamy PE et al (2014) Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol Conserv 175:95–109CrossRefGoogle Scholar
  91. Müller J, Leibl F (2011) Unbewirtschaftete Waldflächen sind europaweit artenreicher. AFZ Der Wald 17(2011):20–21Google Scholar
  92. Müller J, Bußler H, Bense U et al (2005) Urwald relict species—saproxylic beetles indicating structural qualities and habitat tradition. Waldökologie Online 2:106–113Google Scholar
  93. Müller J, Brustel H, Brin A et al (2014a) Increasing temperature may compensate for low amounts of dead wood in driving richness of saproxylic beetles. Ecography 37:1–11CrossRefGoogle Scholar
  94. Müller J, Jarzabek-Müller A, Bussler H, Gossner MM (2014b) Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim Conserv 17:154–162CrossRefGoogle Scholar
  95. Müller J, Boch S, Blaser S, Fischer M, Prati D (2015) Effects of forest management on bryophyte communities on dead wood. Nova Hedwigia 100:423–438Google Scholar
  96. Mund M, Schulze E-D (2005) Silviculture and its interaction with biodiversity and the carbon balance of forest soils. Ecol Stud 176:185–208CrossRefGoogle Scholar
  97. Nascimbene J, Thor G, Nimis PL (2013) Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe—a review. For Ecol Manag 298:27–38CrossRefGoogle Scholar
  98. Neuner S, Albrecht A, Cullmann D, Engels F, Griess VC, Hahn WA, Hanewinkel M, Härtl F, Kölling C, Staupendahl K, Knoke T (2015) Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate. Glob Change Biol 21:935–946CrossRefGoogle Scholar
  99. Nixon KC (1997) Quercus. In: Flora of North America Editorial Committee (eds) Flora of North America north of Mexico, vol 3. Oxford University Press, New York, pp 445–506Google Scholar
  100. Paillet Y, Berges L, Hjälten J et al (2010a) Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol 24:101–112PubMedCrossRefGoogle Scholar
  101. Paillet Y, Berges L, Hjälten J et al (2010b) Compromises in data selection in a meta-analysis of biodiversity in managed and unmanaged forests: response to Halme et al. Conserv Biol 24:1157–1160PubMedCrossRefGoogle Scholar
  102. Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback—a conservation biology challenge. Biol Conserv 158:37–49CrossRefGoogle Scholar
  103. Pedro MS, Rammer W, Seidl R (2015) Tree species diversity mitigates disturbance impacts on forest carbon cycle. Oecologia 177:619–630PubMedCrossRefGoogle Scholar
  104. Petit S, Griffiths L, Smart SS, Smith GM, Stuart RC, Wright SM (2004) Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landsc Ecol 19(5):463–471CrossRefGoogle Scholar
  105. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:987CrossRefGoogle Scholar
  106. Pretzsch H (2003) The elasticity of growth in pure and mixed stands of Norway spruce (Picea abies [L.] Karst.) and common beech (Fagus sylvatica L.). J For Sci 49:491–501Google Scholar
  107. Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. Ecol Stud 176:41–64CrossRefGoogle Scholar
  108. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manag 327:251–264CrossRefGoogle Scholar
  109. Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart HP, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013) Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132(2):263–280CrossRefGoogle Scholar
  110. Pretzsch H, Biber H, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in central Europe have accelerated since 1870. Nat Commun 5:49967CrossRefGoogle Scholar
  111. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanovic D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvativa L.) analyzed along a productivity gradient through Europe. Eur J For Res 134:927–947CrossRefGoogle Scholar
  112. Pyšek P, Danihelka J, Sádlo J, Chrtek JJ, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L (2012) Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255Google Scholar
  113. Radtke A, Ambraß S, Zerbe S, Tonon G, Fontana V, Ammer C (2013) Traditional coppice forest management drives the invasion of Ailanthus altissima and Robinia pseudoacacia into deciduous forests. For Ecol Manag 291:308–317CrossRefGoogle Scholar
  114. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517CrossRefGoogle Scholar
  115. Röhrig E, Ulrich B (1991) Temperate deciduous forests. Ecosystems of the World, vol 7. Elsevier, AmsterdamGoogle Scholar
  116. Rösch V, Tscharnke T, Scherber C, Batáry P (2015) Biodiversity conservation across taxa and landscapes requires many small as well as single large habitat fragments. Oecologia. doi:10.1007/s00442-015-3315-5 PubMedGoogle Scholar
  117. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen–Geiger climate classification. Meteorol Z 19:135–141CrossRefGoogle Scholar
  118. Rüther C, Walentowski H (2008) Tree species composition and historic changes of the Central European oak/beech region. In: Floren A, Schmidl J (eds) Canopy arthropod research in Europe. Bioform, Nürnberg, pp 61–88Google Scholar
  119. Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjæaer ED, Vendramin GG (2009) Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Plant Biol 11:758–765PubMedCrossRefGoogle Scholar
  120. Schall P, Gossner MM, Heinrichs S, Boch S, Jung K, Baumgartner V, Blaser S, Böhm S, Daniel R, Goldmann K, Kaiser K, Lange M, Müller J, Overmann J, Pasalic E, Prati D, Renner S, Sikorski J, Tschapka M, Türke M, Wubelt T, Buscot F, Fischer M, Schulze ED, Weisser WW, Ammer C (2015) Even-aged forest management promotes beta- and gamma-diversity in European temperate forests. Nat Commun (in review)Google Scholar
  121. Scherber C, Eisenhauer N, Weisser W et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556PubMedCrossRefGoogle Scholar
  122. Scherer-Lorenzen M (2014) The functional role of biodiversity in the context of global change. In: Burslem D, Coomes D, Simonson W (eds) Forests and global change. Cambridge University Press, Cambridge, pp 195–238CrossRefGoogle Scholar
  123. Scherer-Lorenzen M, Elend A, Nöllert S, Schulze ED (2000) Plant invasion in Germany: general aspects and impact of nitrogen deposition. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, pp 351–368Google Scholar
  124. Scherzinger W (1996) Naturschutz im wald. Ulmer Verlag, StuttgartGoogle Scholar
  125. Schlee M, Göker M, Grimm GW, Hemleben V (2011) Genetic patterns in the Lathyrus pannonicus complex (Fabaceae) reflect ecological differentiation rather than biography and traditional subspecies division. Bot J Linn Soc 165:402–421CrossRefGoogle Scholar
  126. Schmid M, Pautasso M, Holdenrieder O (2014) Ecological consequences of Douglas fir (Pseudotsuga menziesii) cultivation in Europe. Eur For Res 133:13–29CrossRefGoogle Scholar
  127. Schmidt M (2013) Vegetationsentwicklung in Buchenwäldern nach Aufgabe der forstlichen Nutzung. AFZ-Der Wald 24(2013):14–15Google Scholar
  128. Schmidt M, Kriebitzsch WU, Ewald J (2011) Waldartenlisten der Farn- und Blütenpflanzen, Moose und Flechten Deutschlands. BfN-Skript 299Google Scholar
  129. Scholz H (2007) Questions about indigenous plants and anecophytes. Taxon 56:1255–1260CrossRefGoogle Scholar
  130. Schorn HE, Thompson A (1998) The genus Pseudotsuga: a revision of the fossil record and inferred paleogeographical and migrational pattern. In: UCMP 75th/125th anniversary: integrative paleontology and the future. Museum of Paleontology, University of California, BerkeleyGoogle Scholar
  131. Schulze ED, Ammer C (2015) Naturschutz und Forstwirtschaft: Konflikte um eine nachhaltige Entwicklung der Biodiversität. BIUZ 5(2015):305–314Google Scholar
  132. Schulze ED, Mooney HA (1993) Biodiversity and Ecosystem Function. Ecol Stud 99, 525 ppGoogle Scholar
  133. Schulze ED, Hessenmöller D, Seele C, Wäldchen J, von Lüpke N (2010) Die Buche: Eine Kultur- und Wirtschaftsgeschichte. Biol unserer Zeit 3(2010):171–183CrossRefGoogle Scholar
  134. Schulze ED, Bouriaud O, Wäldchen J, Eisenhauer N, Walentowski H, Seele C, Heinze E, Pruschitzki U, Danila G, Martin G, Hessenmöller D, Bouriaud L, Theodosiu M (2014) Ungulate browsing causes species loss in deciduous forests independent of silvicultural management in Central and Southeastern Europe. Ann For Res 57:267–288CrossRefGoogle Scholar
  135. Sochor M, Vašut RJ, Sharbel TF, Trávníček B (2015) How just a few makes a lot: speciation via reticulation and apomixes on example of European brambles (Rubus subgen, Rubus, Rosaceae). Mol Phylogeny Evol 89:13–17CrossRefGoogle Scholar
  136. Solbrig OT (1993) Plant traits and adaptive strategies: their role in ecosystem function. Ecol Stud 99:97–116Google Scholar
  137. Soravia P (1877) Tecnologia botanico forestale della provincia di Belluno. Tip. Di G Deliberali, BellunoGoogle Scholar
  138. Sroka K, Finch O-D (2006) Ground beetle diversity in ancient woodland remnants in north-western Germany (Coleoptera: Carabidae). J Insect Conserv 10:335–350CrossRefGoogle Scholar
  139. Steffen W, Crutzen PJ, McNeill JR (2007) The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio 36:614–621PubMedCrossRefGoogle Scholar
  140. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879PubMedCrossRefGoogle Scholar
  141. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen deposition threatens species richness of grasslands across Europe. Environ Pollut 158:2940–2945PubMedCrossRefGoogle Scholar
  142. Strauss SH, Doerksen AH, Byrne JR (1990) Evolutionary relationships of Douglas fir and its relatives (genus Pseudotsuga) from the DNA restriction fragment analysis. Can J Bot 68:1502–1510CrossRefGoogle Scholar
  143. Sukopp H (1976) Dynamik und Konstanz in der Flora der Bundesrepublik Deutschland. Schriftenreihe für Vegetationskunde 10:9–27Google Scholar
  144. Szécsényi-Nagy A, Brandt G, Keel V et al (2014) Tracing the genetic origin of Europe`s first farmers reveals insights into their social organization. BioRxiv.erg. doi:10.1101/008664
  145. Tinya F, Marialigeti S, Kiraly I, Nemeth B, Odor P (2009) The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Ars, Western Hungary. Plant Ecol 204:69–81CrossRefGoogle Scholar
  146. Tobias JA (2015) Biodiversity: hidden impacts of logging. Nature 523:163–164PubMedCrossRefGoogle Scholar
  147. Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349(6250):814–818PubMedCrossRefGoogle Scholar
  148. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964–1993) Flora Europaea, vol 1–5. Cambridge University Press, CambridgeGoogle Scholar
  149. Vandekeerkhove K, Keersmaeker LD, Menke N, Meyer P, Verschelde P (2009) When nature takes over from man: dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. For Ecol Manag 258:425–435CrossRefGoogle Scholar
  150. von Lüpke N, Hardtke A, Lück M, Hessenmöller D, Ammer C, Schulze ED (2011) Bestandesvorrat, Baumartenvielfalt und Struktur kleinparzellierter Privatwälder im Hainich. Forstarchiv 82:203–215Google Scholar
  151. Vor T, Bolte A, Spellmann H, Ammer C (2015) Potenziale und Risiken eingeführter Baumarten. Göttinger Forstwissenschaften 7, 150 ppGoogle Scholar
  152. Walentowski H, Zehm A (2010) Reliktische und endemische Gefäßpflanzen im Waldland Bayern—eine vegetationsgeschichtliche Analyse zur Schwerpunktsetzung im botanischen Artenschutz. Tuexenia 30:59–81Google Scholar
  153. Walentowski H, Müller-Kroehling S, Bergmeier E, Bernhardt-Römermann M, Gossner M, Reif A, Schulze ED, Bussler H, Strätz C, Adelmann W (2014) Fagus sylvatica forests and their faunal diversity: a regional and European perspective. Ann For Res 57:215–231Google Scholar
  154. Wei XX, Yang ZY, Wang XQ (2010) Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas. Mol Phylogenet Evol 55:776–785PubMedCrossRefGoogle Scholar
  155. Wenzel HW, Westhus F, Fritzlar F, Haupt R, Hiekel W (2012) Die Naturschutzgebiete Thüringens. Weissdorn Verlag, JenaGoogle Scholar
  156. Werner SM, Raffa KF (2000) Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For Ecol Manag 139:135–155CrossRefGoogle Scholar
  157. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest heath: the need for a global strategy. Science 349:832–836PubMedCrossRefGoogle Scholar
  158. Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  159. Wubet T, Christ S, Schöning I, Bich S, Gawlich M, Schnabel B, Fischer M, Buscot F (2012) Differences in soil fungal communities between European beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. PlosOne 7:e47500CrossRefGoogle Scholar
  160. Wulf M (2003) Preference of plant species for woodlands with differing habitat continuities. Flora 198(6):444–460CrossRefGoogle Scholar
  161. Yabe A (2011) Pseudotsuga tanaii Huzioka from the earliest Miocene Shichiku Flora of northeast Japan: systematics and ecological conditions. Palaeontol Res 15:1–11CrossRefGoogle Scholar
  162. Zündorf HJ, Günther KF, Korsch H, Westhus W (2006) Flora von Thüringen. Weissdorn, JenaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • E. D. Schulze
    • 1
  • G. Aas
    • 2
  • G. W. Grimm
    • 3
  • M. M. Gossner
    • 4
  • H. Walentowski
    • 5
  • C. Ammer
    • 6
  • I. Kühn
    • 7
  • O. Bouriaud
    • 8
  • K. von Gadow
    • 9
  1. 1.Max-Planck Institute for BiogeochemistryJenaGermany
  2. 2.Ecological Botanical GardensUniversity of BayreuthBayreuthGermany
  3. 3.Department of PalaeontologyUniversity of ViennaViennaAustria
  4. 4.Department of Ecology and Ecosystem ManagementTU MünchenFreisingGermany
  5. 5.University of Applied Sciences and Arts Hildesheim, Holzminden, Göttingen (HAWK)GöttingenGermany
  6. 6.Department of Silviculture and Forest Ecology of the Temperate ZonesUniversity of GoettingenGöttingenGermany
  7. 7.Department Community EcologyHelmholtz Centre for Environmental Research – UFZHalleGermany
  8. 8.National Research and Development Institute for Forestry, National Forest InventoryCâmpulung MoldovenescRomania
  9. 9.Department of Forest and Wood ScienceStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations