European Journal of Forest Research

, Volume 135, Issue 1, pp 1–22 | Cite as

Effect of tree species mixing on the size structure, density, and yield of forest stands

  • Hans PretzschEmail author
  • Gerhard Schütze
Assmann Review


An increasing number of studies provide evidence that mixed-species stands can overyield monocultures. But it is still hardly understood, how the overyielding at the stand level emerges from the tree, canopy, and size structure. Analyses of 42 triplets with 126 mixed and mono-specific plots in middle-aged, two-species stands of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] Karst.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and European beech (Fagus sylvativa L.) in Central Europe revealed that mixed-species compared with mono-specific stands can have (1) higher tree numbers, higher right skewness and kurtosis of the size distribution, higher inequality of tree sizes, and thereby higher stocking densities and sum of crown projection areas, (2) growth–size relationships with stronger size asymmetry of growth and higher inequality of size growth, and (3) higher stand productivity coupled with higher maximum stand density, canopy space filling, and size asymmetry. These differences depend on the species assemblage. They suggest a deeper entrance of light into the canopy as well as a higher light interception and light-use efficiency as main causes of the overyielding and overdensity. We discuss implications for research and silviculture and draw conclusions for designing and managing resource-efficient production systems.


Size hierarchy Size asymmetry of competition Size asymmetry of growth Space filling Complementary light use Growth partitioning Growth elasticity 



We are grateful for the inspiring and helpful discussions with Dr. Miren del Rio Gaztelurrutia and Dr. Dan Binkley while working on the evaluation and the manuscript. For this study, we pooled the data of the following simultaneously ongoing projects: W 07 “Long-term experimental plots for forest growth and yield research” (# 7831-23953 W07), “Mixed stands of Scots pine and Norway spruce” (# 7831-23869 W40), and “Growth and yield of mixed stands of European beech and Douglas-fir with respect to site conditions” (# 7831-23851 W44) funded by Bavarian State Ministry for Food, Agriculture and Forestry Munich, “Tree and stand-level growth reactions on drought in mixed versus pure forests of Norway spruce and European beech” (# PR 292/12-1) funded by the German Science Foundation (Deutsche Forschungsgemeinschaft), and COST Action EuMIXFOR (# FP1206) funded by the European Union. We thank all the said institutions for providing the funds, the Bayerische Staatsforsten (BaySF) for supporting the establishment of the plots in Bavaria, Kamil Bielak for providing data from the three triplets in Poland, Jan Fröhlich for programming the algorithm for the Gini coefficient analyses, Ulrich Kern for the graphical artwork, Peter Biber for pre-reviewing and improving the manuscript, and four anonymous reviewers for their constructive criticism.

Supplementary material

10342_2015_913_MOESM1_ESM.doc (254 kb)
Supplementary material 1 (DOC 254 kb)


  1. Assmann E (1954) Die Standraumfrage und die Methodik von Mischbestandsuntersuchungen. Allg Forst- und Jagdztg 125:149–153Google Scholar
  2. Assmann E (1956) Natürlicher Bestockungsgrad und Zuwachs. Forstw Cbl 75:257–265CrossRefGoogle Scholar
  3. Assmann E (1968) Zur Theorie der Grundflächenhaltung. Forstw Cbl 87:321–330CrossRefGoogle Scholar
  4. Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, 506 pGoogle Scholar
  5. Bayer D, Seifert S, Pretzsch H (2013) Structural crown properties of Norway spruce and European beech in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27(4):1035–1047CrossRefGoogle Scholar
  6. Bergel D (1985) Douglasien-Ertragstafel für Nordwestdeutschland. Niedersächs Forstl Versuchsanst, Abt Waldwachstum, 72 pGoogle Scholar
  7. Bielak K, Dudzińska M, Pretzsch H (2014) Mixed stands of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst] can be more productive than monocultures. Evidence from over 100 years of observation of long-term experiments. For Syst 23(3):573–589Google Scholar
  8. Binkley D, Stape JL, Ryan MG (2004) Thinking about efficiency of resource use in forests. For Ecol Manage 193(1):5–16CrossRefGoogle Scholar
  9. Binkley D, Kashian DM, Boyden S, Kaye MW, Bradford JB, Arthur MA, Fornwalt PJ, Ryna MG (2006) Patterns of growth dominance in forests of the Rocky Mountains, USA. For Ecol Manage 236(2):193–201CrossRefGoogle Scholar
  10. Binkley D, Campoe OC, Gspaltl M, Forrester DI (2013) Light absorption and use efficiency in forests: why patterns differ for trees and stands. For Ecol Manage 288:5–13CrossRefGoogle Scholar
  11. Bortz J (1993) Statistik. Springer, Berlin, 753 pCrossRefGoogle Scholar
  12. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2011) Statistical mapping of tree species over Europe. Eur J For Res 131(1):145–157CrossRefGoogle Scholar
  13. Buongiorno J, Dahir S, Lu HC, Lin CR (1994) Tree size diversity and economic returns in uneven-aged forest stands. For Sci 40(1):83–103Google Scholar
  14. Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95(1):27–40CrossRefGoogle Scholar
  15. de Camino R (1976) Zur Bestimmung der Bestandeshomogenität. Allgemeine Forst- und Jagdzeitung 147:54–58Google Scholar
  16. de Martonne E (1926) Une novelle fonction climatologique: L’indice d’aridité. La Météorologie 21:449–458Google Scholar
  17. del Río M, Sterba H (2009) Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann For Sci 66(5):1–11CrossRefGoogle Scholar
  18. del Río M, Condés S, Pretzsch H (2014) Analyzing size-symmetric vs. size-asymmetric and intra-vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For Ecol Manage 325:90–98CrossRefGoogle Scholar
  19. Deleuze C, Pain O, Dhote JF, Herve JC (2004) A flexible radial increment model for individual trees in pure even-aged stands. Ann For Sci 61(4):327–335CrossRefGoogle Scholar
  20. Dirmhirn I (1964) Das Strahlungsfeld im Lebensraum. Akademische Verlagsgesellschaft, Frankfurt a. MGoogle Scholar
  21. Dirnberger GF, Sterba H (2014) A comparison of different methods to estimate species proportions by area in mixed stands. For Syst 23(3):534–546Google Scholar
  22. Ellenberg H, Leuschner C (2010) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Eugen Ulmer, StuttgartGoogle Scholar
  23. Forrester DI (2014) The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. For Ecol Manage 312:282–292CrossRefGoogle Scholar
  24. Forrester DI, Albrecht AT (2014) Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. For Ecol Manage 328:94–102CrossRefGoogle Scholar
  25. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For Ecol Manage 233:211–230CrossRefGoogle Scholar
  26. Forrester DI, Collopy JJ, Beadle CL, Baker TG (2012) Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a young Eucalyptus nitens plantation. For Ecol Manage 267:104–116CrossRefGoogle Scholar
  27. Forrester DI, Kohnle U, Albrecht AT, Bauhus J (2013) Complementarity in mixed-species stands of Abies alba and Picea abies varies with climate, site quality and stand density. For Ecol Manage 304:233–242CrossRefGoogle Scholar
  28. Franz F, Bachler J, Deckelmann B, Kennel E, Kennel R, Schmidt A, Wotschikowsky U (1973) Bayerische Waldinventur 1970/71, Inventurabschnitt I: Großrauminventur Aufnahme- und Auswertungsverfahren. Forstl Forschungsber München 11, 143 pGoogle Scholar
  29. Griess VC, Knoke Th (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can J For Res 41:1141–1158CrossRefGoogle Scholar
  30. Hara T (1992) Effects of the mode of competition on stationary size distribution in plant populations. Annals Botany 69(6):509–513Google Scholar
  31. Hara T (1993) Mode of competition and size-structure dynamics in plant communities. Plant Species Biol 8(2–3):75–84CrossRefGoogle Scholar
  32. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  33. Hasenauer H, Kindermann G, Steinmetz P (2006) The tree growth model MOSES 3.0. In: Hasenauer H (ed) Sustainable forest management. Springer, Berlin, pp 64–70CrossRefGoogle Scholar
  34. Huber MO, Sterba H, Bernhard L (2014) Site conditions and definition of compositional proportion modify mixture effects in Picea abiesAbies alba stands. Can J For Res 44(10):1281–1291CrossRefGoogle Scholar
  35. Johann K (1993) DESER-Norm 1993. Normen der Sektion Ertragskunde im Deutschen Verband Forstlicher Forschungsanstalten zur Aufbereitung von waldwachstumskundlichen Dauerversuchen. Proc Dt Verb Forstl Forschungsanst, Sek Ertragskd, in Unterreichenbach-Kapfenhardt, pp 96–104Google Scholar
  36. Katholnig L (2012) Growth dominance and Gini-Index in even-aged and in uneven-aged forests, Master thesis, Univ. of Natural Resources and Applied Life Sciences, BoKu, Vienna, 67 pGoogle Scholar
  37. Kelty MJ (1992) Comparative productivity of monocultures and mixed stands. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 125–141CrossRefGoogle Scholar
  38. Kennel R (1965) Untersuchungen über die Leistung von Fichte und Buche im Rein- und Mischbestand. AFJZ 136(149–161):173–189Google Scholar
  39. Kramer H (1988) Waldwachstumslehre. Paul Parey, Hamburg, 374 ppGoogle Scholar
  40. Le Moguedec G, Dhote JF (2012) Fagacees: a tree-centered growth and yield model for sessile oak (Quercus petraea L.) and common beech (Fagus sylvatica L.). Ann For Sci 69(2):257–269CrossRefGoogle Scholar
  41. Loreau M (1998) Separating sampling and other effects in biodiversity experiments. Oikos 82(3):600–602CrossRefGoogle Scholar
  42. Mitscherlich G (1971) Wald, Wachstum und Umwelt. 2. Band, Waldklima und Wasserhaushalt. JD Sauerländer’s Verlag, Frankfurt am Main, 365 pGoogle Scholar
  43. Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219PubMedCrossRefGoogle Scholar
  44. Nagel J (1999) Konzeptionelle Überlegungen zum schrittweisen Aufbau eines waldwachstumskundlichen Simulationssystems für Nordwestdeutschland. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst 128, JD Sauerländer’s VerlagGoogle Scholar
  45. Otto HJ (1994) Waldökologie. Ulmer, StuttgartGoogle Scholar
  46. Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20(1):170–180CrossRefGoogle Scholar
  47. Perot T, Picard N (2012) Mixture enhances productivity in a two-species forest: evidence from a modeling approach. Ecol Res 27(1):83–94CrossRefGoogle Scholar
  48. Piotto D (2008) A meta-analysis comparing tree growth in monocultures and mixed plantations. For Ecol Manag 255:781–786CrossRefGoogle Scholar
  49. Pretzsch H (2005) Stand density and growth of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). Evidence from long-term experimental plots. Eur J For Res 124:193–205CrossRefGoogle Scholar
  50. Pretzsch H (2006) Species-specific allometric scaling under self-thinning. Evidence from long-term plots in forest stands. Oecologia 146:572–583PubMedCrossRefGoogle Scholar
  51. Pretzsch H (2009) Forest dynamics, growth and yield. From measurement to model. Springer, Berlin, 664 pGoogle Scholar
  52. Pretzsch H (2010) Zur Verteilung des Zuwachses zwischen den Bäumen eines Bestandes und Abhängigkeit des Verteilungsschlüssels von den Standortbedingungen. Allg Forst- u J-Ztg 181(1/2): 4–13Google Scholar
  53. Pretzsch H (2014) Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264CrossRefGoogle Scholar
  54. Pretzsch H, Dieler J (2011) Evidence of variant intra- and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169(3):637–649CrossRefGoogle Scholar
  55. Pretzsch H, Schütze G (2009) Trangressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204CrossRefGoogle Scholar
  56. Pretzsch H, Schütze G (2014) Size-structure dynamics of mixed versus pure forest stands. For Syst 23(3):560–572Google Scholar
  57. Pretzsch H, Biber P, Ďurský J (2002) The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162(1):3–21CrossRefGoogle Scholar
  58. Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A (2010) Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann For Sci. doi: 10.1051/forest/2010037 Google Scholar
  59. Pretzsch H, Matthew C, Dieler J (2012) Allometry of tree crown structure. In: Matyssek R et al (eds) Growth and defense in plants, ecological studies 220, chapter 13. Springer, Berlin, pp 287–310. doi: 10.1007/978-3-642-30645-7_13
  60. Pretzsch H, Bielak K, Block J, Bruchwald A, Dieler J, Ehrhart H-P, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013a) Productivity of pure versus mixed stands of oak (Quercus petraea (MATT.) LIEBL and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient. Eur J For Res 132(2):263–280CrossRefGoogle Scholar
  61. Pretzsch H, Bielak K, Bruchwald A, Dieler J, Dudzińska M, Ehrhart H-P, Jensen AM, Johannsen VK, Kohnle U, Nagel J, Spellmann H, Zasada M, Zingg A (2013b) Mischung und Produktivität von Waldbeständen. Ergebnisse langfristiger ertragskundlicher Versuche. Allg For Jagdztg 184:177–196 (In German with English summary) Google Scholar
  62. Pretzsch H, Block J, Dieler J, Gauer J, Göttlein A, Moshammer R, Schuck J, Weis W, Wunn U (2014) Nährstoffentzüge durch die Holz- und Biomassenutzung in Wäldern. Teil 1: Schätzfunktionen für Biomasse und Nährelemente und ihre Anwendung in Szenariorechnungen. Allg Forst u J-Ztg 185(11/12):261–285Google Scholar
  63. Pretzsch H, Biber P, von Gadow K (2015a) Ernst Assmann: a German pioneer in forest production ecology and quantitative silviculture. Eur J For Res 134(3):391–402CrossRefGoogle Scholar
  64. Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont, M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015b) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134(5):927–947Google Scholar
  65. Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638Google Scholar
  66. Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30(9):1192–1208PubMedCrossRefGoogle Scholar
  67. Río MD, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16(1):166–176PubMedCrossRefGoogle Scholar
  68. Schober R (1967) Buchen-Ertragstafel für mäßige und starke Durchforstung. In: Schober R (ed) Die Rotbuche 1971. Schr Forstl Fak Univ Göttingen u Niedersächs Forstl Versuchsanst 43/44. JD Sauerländer’s Verlag, Frankfurt am Main, 333 pGoogle Scholar
  69. Schwinning S, Weiner S (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455CrossRefGoogle Scholar
  70. Sterba H (1991) Forstliche Ertragslehre 4. Lecture at the Univ Bodenkulturl, Wien, 160 pGoogle Scholar
  71. Sterba H, Monserud RA (1997) Applicability of the forest stand growth simulator PROGNAUS for the Austrian part of the Bohemian Massif. Ecol Model 98(1):23–34CrossRefGoogle Scholar
  72. Sterba H, del Río M, Brunner A, Condes S (2014) Effect of species proportion definition on the evaluation of growth in pure vs. mixed stands. For Syst 23(3):547–559Google Scholar
  73. Strigul N, Pristinski D, Purves D, Dushoff J, Pacala St (2008) Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol Monogr 78(4):523–545CrossRefGoogle Scholar
  74. Toïgo M, Vallet P, Perot T, Bontemps J-D, Piedallu C, Courbaud B (2015a) Overyielding in mixed forests decreases with site productivity. J Ecol 103:502–512CrossRefGoogle Scholar
  75. Toïgo M, Vallet P, Tuilleras V, Lebourgeois F, Rozenberg P, Perret S, Courbaud B, Perot T (2015b) Species mixture increases the effect of drought on tree ring density, but not on ring width, in Quercus petraeaPinus sylvestris stands. For Ecol Manage 345:73–82CrossRefGoogle Scholar
  76. Vallet P, Perot T (2011) Silver fir stand productivity is enhanced when mixed with Norway spruce: evidence based on large-scale inventory data and a generic modelling approach. J Veg Sci 22(5):932–942CrossRefGoogle Scholar
  77. Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge, 237 pCrossRefGoogle Scholar
  78. Webster CR, Lorimer CG (2003) Comparative growing space efficiency of four tree species in mixed conifer–hardwood forests. For Ecol Manage 177(1):361–377CrossRefGoogle Scholar
  79. Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5(11):360–364PubMedCrossRefGoogle Scholar
  80. Wichmann L (2001) Annual variations in competition symmetry in even-aged Sitka spruce. Ann Bot 88:145–151CrossRefGoogle Scholar
  81. Wichmann L (2002) Competition symmetry. Chapter 7. In: Modelling the effects of competition between individual trees in forest stands. Ph.D. Thesis, Unit of Forestry, Copenhagen, pp 67–77Google Scholar
  82. Wiedemann E (1936/42) Die Fichte 1936. Verlag M & H Schaper, Hannover, 248 pGoogle Scholar
  83. Wiedemann E (1943) Kiefern-Ertragstafel für mäßige Durchforstung, starke Durchforstung und Lichtung. In: Wiedemann E (ed) Die Kiefer 1948. Verlag M & H Schaper, Hannover, 337 pGoogle Scholar
  84. Yokozawa M, Kubota Y, Hara T (1998) Effects of competition mode on spatial pattern dynamics in plant communities. Ecol Model 106(1):1–16CrossRefGoogle Scholar
  85. Zeide B (1985) Tolerance and self-tolerance of trees. For Ecol Manage 13:149–166CrossRefGoogle Scholar
  86. Zhang Y, Chen HY, Reich PB (2012) Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J Ecol 100(3):742–749CrossRefGoogle Scholar
  87. Zhao D, Borders B, Wilson M, Rathbun SL (2006) Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest. Ecol Model 196(1):90–102CrossRefGoogle Scholar
  88. Zöhrer F (1969) Bestandeszuwachs und Leistungsvergleich montan, subalpiner Lärchen-Fichten-Mischbestand. Forstwiss Cent 88(1):41–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Chair for Forest Growth and Yield ScienceTechnische Universität MünchenFreisingGermany

Personalised recommendations