European Journal of Forest Research

, Volume 134, Issue 6, pp 1087–1094 | Cite as

Detecting the socioeconomic driving forces of the fire catastrophe in NW Spain

  • Marcos Álvarez-Díaz
  • Manuel González-GómezEmail author
  • María Soledad Otero-Giraldez
Original Paper


Wildfires cause devastating environmental, social and economic effects in different regions of the world. The aim of this study was to analyze the long-run relationship between the number of ignition events and socioeconomic variables using time series data. We focus on Galicia, a region in the northwest part of the Iberian Peninsula and with one of the highest fire density and largest burned areas in Europe. Since the late 1980s, the number of forest fires has increased in Galicia and caused extensive damage to the environment, property and human life. The analysis is based on cointegration tests between variables. In order to avoid the problems related to spurious regression, the ARDL bounds testing approach was applied. The statistical evidence allows us to conclude that in the long term, the price of eucalyptus timber, the population in the primary sector and the intensity of the elections are relevant factors in explaining the start of forest fires. These three variables are found to increase the propensity of the population to start a fire that cause devastating environmental, social and economic effects.


Ignition Socioeconomic factors Eucalyptus timber price Population in the primary sector Elections 


  1. Álvarez-Díaz M, González-Gómez M, Otero Giráldez MS (2015) Analyzing the effects of salvage on timber price in a reforested región with plantations in the Iberian Peninsula. Austrian J For Sci 132(1):47–60Google Scholar
  2. Baek J (2012) The long-run determinants of US lumber imported from Canada revisited. For Policy Econ 14(1):68–73CrossRefGoogle Scholar
  3. Balg BA, Metcalf H (2010) Modeling exchange rate volatility. Rev Int Econ 18(1):109–120CrossRefGoogle Scholar
  4. Banerjee A, Dolado J, Galbraith J, Hendry D (1993) Co-integration, error correction, and the econometric analysis of non-stationary data. Oxford University Press, OxfordCrossRefGoogle Scholar
  5. Bardsen C (1989) Estimation long run coefficients in error correction models. Oxford Bull Econ Stat 51(3):345–350CrossRefGoogle Scholar
  6. Bergen V, Löwenstein W, Olschewski R (2013) Forstökonomie. Ansätzefür eine vernünftige Umwelt- und Landnutzung. Volkswirtschaftliche Grundlage. 2. überarbeitete und erweiterte Auflage. Vahlen Verlag. MünchenGoogle Scholar
  7. Butry DT, Mercer DE, Prestemon JP, Pye JM, Holmes TP (2001) What is the price of catastrophic wildfire. J Forest 99(11):9–17Google Scholar
  8. Catry FX, Rego FC, Silva JS, Moreira F, Camia A, Ricotta C, Comedera M (2009) Fire starts and human activities. In: Sande Silva J, Rego F, Fernandes P, Rigolot E (eds) Towards integrated fire management-outcomes of the European project fire paradox. European Forest Institute, Barcelona, pp 9–22Google Scholar
  9. Çetin M, Ecevit E, Seker F, Günaydin D (2015) Financial development and energy consumption in Turkey: empirical evidence from cointegration and causality tests. In: Zeynep C (ed) Handbook of research on behavioral finance and investment strategies. IGI Global, HersheyGoogle Scholar
  10. Chas-Amil ML (2007) Forest fires in Galicia (Spain): threats and challenges for the future. J For Econ 13:1–5Google Scholar
  11. Chas-Amil ML, Touza J, Prestemon JP (2010) Spatial distribution of human-caused forest fires in Galicia (NW Spain). In: Perona G, Brebbia CA (eds) Transactions on ecology and the environment. Modelling, monitoring and management of forest fires II, vol 137. pp 247–258Google Scholar
  12. De Vita G, Abbott A (2002) Are saving and investment cointegrated? An ARDL bounds testing approach. Econ Lett 77:293–299CrossRefGoogle Scholar
  13. Díaz-Balteiro L (2007) Letter to the editor. J For Econ 13:291–292Google Scholar
  14. Dickey DA, Fuller WA (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49:1057–1072CrossRefGoogle Scholar
  15. Engle RF, Granger CWJ (1987) Cointegration and error correction: representation, estimation and testing. Econometrica 55:251–276CrossRefGoogle Scholar
  16. Fernandes PMA (2008) Forest fires in Galicia (Spain) the outcome of unbalanced fire management. J For Econ 14(3):155–157Google Scholar
  17. Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignitions over Europe. Environ Manage 51:651–662CrossRefPubMedGoogle Scholar
  18. García Diez EL, Labajo Salazar JL, de Pablo Dávila F (1993) Some meteorological conditions associated with forest fires in Galicia (Spain). Int J Biometeorol 37:194–199CrossRefGoogle Scholar
  19. Gonzalez-Gomez M, Bergen V (2015) Berücksichtigung der Nichtstationarität von Zeitreihen bei empirischen Untersuchungen des deutschen Rohholzmarktes. Allgemeine Forst- und Jagdzeitung 186(3/4):53–62Google Scholar
  20. Gonzalez-Gomez M, Olschewski R (2008) Die Wertschätzung forstwirtschaftlicher Flächennutzung in der Küstenregion Spaniens and Portugals. Allgemeine Forst- und Jagdzeitung 179(12):219–224Google Scholar
  21. Granger CWJ, Huang B, Yang C (2000) A bivariate causality between stock prices and exchange rates: evidence from recent Asian flu. Q Rev Econ Finance 40:337–354CrossRefGoogle Scholar
  22. Hänninen R, Toppinen A (1999) Long-run price effects of exchange rate changes in Finnish pulp and paper exports. Appl Econ 31(6):947–956CrossRefGoogle Scholar
  23. Johansen S, Juselius K (1990) Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford Bull Econ Stat 52:169–210CrossRefGoogle Scholar
  24. Koskela E, Ollikainen M (1988) A game theoretical model of timber prices with capital stock: an empirical application to the Finnish pulp and paper industry. Can J For Res 28:1481–1493CrossRefGoogle Scholar
  25. Kremers JJ, Ericson NR, Dolado JJ (1992) The power of cointegration tests. Oxford Bull Econ Stat 54:325–347CrossRefGoogle Scholar
  26. Kuuluvainen J (1986) An econometric analysis of the sawlog market in Finland. J World For Manag 2(1):1–19Google Scholar
  27. MARM (2009) Conservación de los recursos naturales y ordenación del territorio. Incendios forestales. Ministerio de Medioambiente, Medio Rural y MarinoGoogle Scholar
  28. Martin P (2004) Towards methods for investigating on wildland fire causes. EUFIRELAB.EVR1-CT-2002-40028. Deliverable D-05-02Google Scholar
  29. MMA (2007) Los incendios forestales en España. Decenio 1996–2005. Ministerio de Medioambiente. Centro de Coordinación de la Información nacional sobre Incendios ForestalesGoogle Scholar
  30. Moreira F, Viedma O, Arianoutsou M, Cur T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape–wildfire interactions in Southern Europe: implications for landscape management. J Environ Manag 92:2389–2402CrossRefGoogle Scholar
  31. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337–350CrossRefGoogle Scholar
  32. Pereira MG, Trigo RM, da Camara CC, Pereira JMC, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agric For Meteorol 129:11–25CrossRefGoogle Scholar
  33. Pesaran MH, Shin Y (1999) An autoregressive distributed lag modelling approach to cointegration analysis. In: Strom S, Diamond P (eds) Econometrics and economic theory in the 20th century: the Ragnar Frisch centennial symposium. Cambridge University Press, CambridgeGoogle Scholar
  34. Pesaran M, Shin Y, Smith R (2001) Bounds testing approaches to the analysis of level relationships. J Appl Econom 16:289–326CrossRefGoogle Scholar
  35. Prestemon JF, Holmes TP (2000) Timber price dynamics following a catastrophe. Am J Agric Econ 82(1):145–160CrossRefGoogle Scholar
  36. Prestemon JP, Chas-Amil ML, Touza J, Goodrick SL (2012) Forestcasting intentional wildfires using temporal and spatio-temporal autocorrelations. Int J Wildland Fire 21(6):743–754CrossRefGoogle Scholar
  37. Ricotta C, Guglietta D, Migliozzi A (2012) No evidence of increased fire risk due to agricultural abandonment in sardine (Italy). Nat Hazards Earth Syst Sci 12:1333–1336CrossRefGoogle Scholar
  38. Romero R, Perry GLW (2004) The role of land abandonment in landscape dynamics in the SPA “Encinares del río Alberche y Cofio, Central Spain 1984–1999”. Landscape Urban Plan 66:217–232CrossRefGoogle Scholar
  39. Sande Silva J, Rego F, Fernandes P, Rigolot E (2010) Towards integrated fire management-outcomes of the European project fire paradox. European Forest Institute, BarcelonaGoogle Scholar
  40. San-Miguel J, Camia A (2009) Forest fires at a glance: facts, figures and trends in the EU. In: Birot Y (ed) Living with wildfires: what science can tell us. European Forest Institute, Barcelona, pp 11–18 (discussion paper 15)Google Scholar
  41. Schwarzbauer P (2007) Einflüsse von Schadholzmengen auf Rohholzpreise. Eine quantitativ-statistische Analyse am Beispiel Österreich. Allgemeine Forst- und Jagdzeitung 178(1):1–8Google Scholar
  42. Steinmeyer UPM (2000) Auswirkungen von Kalamitäten auf Einschlag und Holzangebot ausgewählter Landesforstverwaltungen. In: Bergen V (ed) Ökonomische Analysen von Schutz-Erholungs und Rohholzleistungen des Waldes in Rheinlandpfalz. Mittteilungen des Landesforstverwaltung Rheinlandpfalz Nr. 17/2000 107-118Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marcos Álvarez-Díaz
    • 1
  • Manuel González-Gómez
    • 1
    Email author
  • María Soledad Otero-Giraldez
    • 1
  1. 1.University of VigoVigoSpain

Personalised recommendations