European Journal of Forest Research

, Volume 134, Issue 6, pp 1005–1017 | Cite as

Cedrus libani: A promising tree species for Central European forestry facing climate change?

  • Jana Messinger
  • Aylin Güney
  • Reiner Zimmermann
  • Barbara Ganser
  • Martin Bachmann
  • Sabine Remmele
  • Gregor Aas
Original Paper


Considering climate change, the discussion intensifies whether and to what extent exotic tree species should be taken into account for forest cultivation, especially when indigenous species are no longer able to fulfill essential forest functions. In this study, for the first time growth potential of Cedrus libani was evaluated under climatic conditions in Central Europe (Bayreuth, Germany). The sampled trees exhibited extraordinary growth with tree ring widths averaging 4.9 mm year−1 during the past 23 years. A continuously available soil water supply enhanced radial stem growth. Thus, growth declined during the dry year of 2003, but recovered to average values the following year. Our results confirm that C. libani is a light-demanding species which is sensitive to competition and which shows a typical age trend. In a second study, we compared cambial growth in Bayreuth with a natural stand in Elmali (Turkey) in 2009. Cambial growing season in Bayreuth was 45 days longer, and radial growth rates in Bayreuth were four times higher than in Elmali. Interestingly, C. libani maintained a slow but continuous radial growth at Elmali even during the dry summer period, confirming its exceptional drought tolerance. Our results indicate a high adaption of C. libani to current and future climate conditions in Central Europe. It tolerates extreme cold in winter and prolonged droughts during summer. Thus, its promising potential for establishing stable and productive forest stands in Central Europe under a changing climate should be confirmed in further studies.


Cedrus libani Exotic Assisted migration Global warming Silviculture Tree ring analysis 



Ecological-Botanical Gardens


Hegyi’s diameter-distance competition index


Day of year



We thank BayCEER, the team of Prof. Dr. Thomas Foken (both University of Bayreuth), and the German Weather Service (Deutscher Wetterdienst) for providing the Bayreuth climate data sets and the Southwest Anatolian Forest Research Institute for the climate data sets of the meteorological station Camkuyusu. Special thanks go to the Southwest Anatolian Forest Research Institute in Antalya for permission to carry out the fieldwork within the Elmali Cedar Research Forest in the Southwestern Taurus Mountains, for cooperation and help throughout the study. We thank all gardeners of the EBG, particularly Georg Seidler and Claus Rupprich, for helpful information and assistance with tree core sampling, Susanne Pätz and Ronny Wegner for help with data collection and Alana Steinbauer for help in dendrochronological analysis. We thank the two anonymous reviewers for their highly valuable suggestions.


  1. Akkemik Ü (2003) Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA J 24(1):63–73CrossRefGoogle Scholar
  2. Atalay I (2002) Mountain ecosystems of Turkey. In: 7th international symposium on high mountain remote sensing cartography, ICAGoogle Scholar
  3. Aussenac G (1984) Le cèdre, essai d’interprétation bioclimatique et écophysiologique. Bull Soc Bot Fr Actual Bot 131:385–398Google Scholar
  4. Avci M, Carus S (2005) The impact of cedar processionary moth [Traumatocampa ispartaensis (Doganlar & Avci) (Lepidoptera: Notodontidae)] outbreaks on radial growth of Lebanon cedar (Cedrus libani A. Rich.) trees in Turkey. J Pest Sci 78:91–98CrossRefGoogle Scholar
  5. Ayasligil Y (1987) Der Köprülü Kanyon Nationalpark, seine Vegetation und ihre Beeinflussung durch den Menschen Landschaftsökologie Weihenstephan, vol 5. Weihenstephan, Freising, p 307Google Scholar
  6. Ayasligil Y (1997) Cedrus libani A. Rich., 1823. Enzyklopädie der Holzgewächse—10. Erg Lfg 12:1–10Google Scholar
  7. Ayasligil Y (2008) Cedrus libani. In: Schütt Weisgerber, Schuck Lang, Stimm Roloff (eds) Lexikon der Nadelbäume. Wiley-VCH, Weinheim, pp 107–116Google Scholar
  8. Ayasligil Y, Duhme F (1993) Prospects of Köprülü Kanyon National Park for meeting both conservation targets and people’s need for development. Landsc Urban Plan 24(1):143–151CrossRefGoogle Scholar
  9. Bariteau M, Vauthier D (2007) Main results from the French Cedar comparative field test network. INRA-FRANCE, project presentation.
  10. Basaran MA, Basaran S, Bas N, Kacar S, Tolunay D, Makineci E, Kavgaci A, Deniz G (2008) Determining the actual state of Cedar Research Forest Elmali by GIS based digital maps. South-West Anatolia Forest Research Institute, Antalya, p 331Google Scholar
  11. Boydak M (2003) Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. For Ecol Manag 178:231–243CrossRefGoogle Scholar
  12. Boydak M, Calikoglu M (2008) Biology and silviculture of Lebanon Cedar (Cedrus libani A. Rich.). OGEM - VAK, Ankara, Turkey, p 228Google Scholar
  13. Brand T, Butin H (2015) Neue Nadelschütte an Zedern entdeckt. Dtsch Baumsch 01(2015):52–53Google Scholar
  14. Brang P, Bugmann H, Bürgi A, Mühlethaler U, Rigling A, Schwitter R (2008) Climate change as a challenge for silviculture (Klimawandel als waldbauliche Herausforderung). Schweiz Z Forstwes 159:362–373CrossRefGoogle Scholar
  15. Brooks JR, Jiang L, Özcelik R (2008) Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon and Cilicica fir in Turkey. For Ecol Manag 256:147–151CrossRefGoogle Scholar
  16. BWI3 (2012) Bundeswaldinventur. Bundesminist Ernähr LandwirtschGoogle Scholar
  17. Carus S, Avci M (2005) Growth loss of Lebanon cedar (Cedrus libani) stands as related to periodic outbreaks of the cedar shoot moth (Dichelia cedricola). Phytoparasitica 33(1):33–48CrossRefGoogle Scholar
  18. Carus S, Catal Y (2010) Growth response of Lebanon cedar (Cedrus libani) plantations to thinning intensity in Western Turkey. J Environ Biol 31(5):609–614PubMedGoogle Scholar
  19. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533CrossRefPubMedGoogle Scholar
  20. Dagher-Kharrat MB, Mariette S, Lefèvre F, Fady B, Grenier-de March G, Plomion C, Savouré A (2007) Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes 3(3):275–285CrossRefGoogle Scholar
  21. Debreczy Z, Rácz I (2011) Conifers around the world—conifers of the temperate zones and adjacent regions, vol 1. Dendropress, BudapestGoogle Scholar
  22. DIN EN 350-2:1994-10 Dauerhaftigkeit von Holz und Holzprodukten—Natürliche Dauerhaftigkeit von Vollholz—Teil 2: Leitfaden für die natürliche Dauerhaftigkeit und Tränkbarkeit von ausgewählten Holzarten von besonderer Bedeutung für EuropaGoogle Scholar
  23. Ducrey M, Huc R, Ladjal M, Guehl JM (2008) Variability in growth, carbon isotope composition, leaf gas exchange and hydraulic traits in the eastern Mediterranean cedars Cedrus libani and C.brevifolia. Tree Physiol 28:689–701CrossRefPubMedGoogle Scholar
  24. Engelmark O, Sjöberg K, Andersson B et al (2001) Ecological effects and management aspects of an exotic tree species: the case of lodgepole pine in Sweden. For Ecol Manag 141:3–13CrossRefGoogle Scholar
  25. Essl F, Moser D, Dullinger S, Mang T, Hulme PE (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Divers Distrib 16:911–921CrossRefGoogle Scholar
  26. Evcimen BS (1963) Türkiye sedir ormanlarinin ekonomik önemi, hasilat ve amanejman esaslari (The economic importance and the management principles of cedar forests in Turkey). Orman Genel Müd. Yayinlari 355/16 (Ankara) (in Turkish with English summary) Google Scholar
  27. Fady B, Lefèvre F, Vendramin GG, Ambert A, Régnier C, Bariteau M (2008) Genetic consequences of past climate and human impact on eastern Mediterranean Cedrus libani forests. Implications for their conservation. Conserv Genet 9(1):85–95CrossRefGoogle Scholar
  28. Farjon A (2010) A handbook of the world’s conifers, vol 1. Brill, LeidenCrossRefGoogle Scholar
  29. Felton A, Boberg J, Björkman C, Widenfalk O (2013) Identifying and managing the ecological risks of using introduced tree species in Sweden’s production forestry. For Ecol Manag 307:165–177CrossRefGoogle Scholar
  30. Foken T, Lüers J, Lauerer M, Aas G (2004) Im Ökologisch-Botanischen Garten: Dem Klima auf der Spur. Freundeskreis des Ökologisch-Botanischen Gartens der Universität Bayreuth e.V., BayreuthGoogle Scholar
  31. Gray LK, Gylander T, Mbogga MS, Chen PY, Hamann A (2011) Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol Appl 21(5):1591–1603CrossRefPubMedGoogle Scholar
  32. Hegyi F (1974) A simulation model for managing jack-pine stands. In: Fries J (ed) Growth models for tree and stand simulation. Royal College of Forestry, Stockholm, pp 74–90Google Scholar
  33. Hemery GE (2008) Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. Int For Rev 10(4):591–607Google Scholar
  34. Huber G, Storz C (2014) Zedern und Riesenlebensbaum—welche Herkünfte sind bei uns geeignet? LWF-Wissen 74:63–71Google Scholar
  35. IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  36. Jasińska AK, Boratyńska K, Sobierajska K, Romo A, Ok T, Kharat MBD, Boratyński A (2013) Relationships among Cedrus libani, C. brevifolia and C. atlantica as revealed by the morphological and anatomical needle characters. Plant Syst Evol 299(1):35–48CrossRefGoogle Scholar
  37. Kantarci MD (1985) Dibek (Kumluca) ve Camkuyusu (Elmali) sedir (Cedrus libani A. Richard) ormanlarinda ekolojik arastirmalar (Ökologische Untersuchungen in Dibek (Kumluca) und Camkuyusu (Elmali) Zedernwäldern). I.Ü. Orman Fakültesi Dergisi A 35(2):19–41 (in Turkish with German summary) Google Scholar
  38. Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st century warming scenarios. Geophys Res Lett 38(8):1–5Google Scholar
  39. Kölling C (2013) Nichtheimische Baumarten—Alternativen im klimagerechten Waldumbau? LWF-aktuell 96:4–11Google Scholar
  40. Kölling C, Ammer C (2006) Waldumbau unter den Vorzeichen des Klimawandels. AFZ/Der Wald 20:1086–1089Google Scholar
  41. Kölling C, Knoke T, Schall P, Ammer C (2009) Überlegungen zum Risiko des Fichtenanbaus in Deutschland vor dem Hintergrund des Klimawandels. Forstarchiv 80(2):42–54Google Scholar
  42. Kraft G (1884) Beitrag zur Lehre von Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth, HannoverGoogle Scholar
  43. Kreyling J, Schmid S, Aas G (2015) Cold tolerance of tree species is related to the climate of their native ranges. J Biogeogr 42(1):156–166CrossRefGoogle Scholar
  44. Kurt Y, Kaya N, Işik K (2008) Isozyme variation in four natural populations of Cedrus libani A. Rich. Turk J Agric For 32(2):137–145 Google Scholar
  45. Ladjal M, Deloche N, Huc R, Ducrey M (2007) Effects of soil and air drought on growth, plant water status and leaf gas exchange in three Mediterranean cedar species. Cedrus atlantica, C. brevifolia and C. libani. Trees 21:201–213CrossRefGoogle Scholar
  46. Larcher W (2001) Ökophysiologie der Pflanzen, 6th edn. Ulmer, StuttgartGoogle Scholar
  47. Lehtijärvi A, Aday AG, Doğmuş-Lehtijärvi HT (2011) Cedrus libani: the most susceptible Turkish conifer species to local Heterobasidion isolates in spring inoculations. For Pathol 41(1):1–6CrossRefGoogle Scholar
  48. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  49. Milad M, Schaich H, Konold W (2013) How is adaptation to climate change reflected in current practice of forest management and conservation? A case study from Germany. Biodivers Conserv 22:1181–1202CrossRefGoogle Scholar
  50. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17(8):2145–2151CrossRefPubMedGoogle Scholar
  51. Mueller JM, Hellmann JJ (2008) An assessment of invasion risk from assisted migration. Conserv Biol 22(3):562–567CrossRefPubMedGoogle Scholar
  52. Öner N, Uysal M (2009) Usability of the Taurus Cedar and Crimean Pine in green belt afforestations in semiarid regions in Turkey: a case study in Konya Province Loros Mountain—Akyokus. Afr J Agric Res 4(10):1049–1057Google Scholar
  53. Peterken GF (2001) Ecological effects of introduced tree species in Britain. For Ecol Manag 141:31–42CrossRefGoogle Scholar
  54. Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Core team (2009) nlme: linear and nonlinear mixed effects models. R package version 3.1-96Google Scholar
  55. Pretzsch H (2002) Grundlagen der Waldwachstumsforschung. Parey Verlag, BerlinGoogle Scholar
  56. Qiao CY, Ran JH, Li Y, Wang XQ (2007) Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Ann Bot 100(3):573–580PubMedCentralCrossRefPubMedGoogle Scholar
  57. Reif A, Aas G, Essl F (2011) Braucht der Wald in Zeiten der Klimaveränderung neue, nicht heimische Baumarten? Nat Landsch 6:256–260Google Scholar
  58. Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26CrossRefGoogle Scholar
  59. Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331CrossRefGoogle Scholar
  60. Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biol Invasions 16:473–481CrossRefGoogle Scholar
  61. Rigling A, Brang P, Bugmann H, Kräuchi N, Wohlgemuth T, Zimmermann N (2008) Climate change as a touchstone for forest management. (Klimawandel als Prüfstein für die Waldbewirtschaftung). Schweiz Z Forstwes 159:316–325CrossRefGoogle Scholar
  62. Risse M (2013) Holzeigenschaften der Libanonzeder (Cedrus libani A. Rich.) aus dem Ökologisch-Botanischen Garten Bayreuth, Master thesis, Technical University of Munich, Faculty of Forest Science and Resource Management, MunichGoogle Scholar
  63. Scaltsoyiannes A (1999) Allozyme differentiation and phylogeny of cedar species. Silvae Genet 48(2):61–68Google Scholar
  64. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefPubMedGoogle Scholar
  65. Schenck CA (1939) Fremdländische Wald- und Parkbäume, 2. Band: Die Nadelhölzer. Paul Parey, BerlinGoogle Scholar
  66. Schmiedinger A, Bachmann M, Kölling C, Schirmer R (2009) Verfahren zur Auswahl von Baumarten für Anbauversuche vor dem Hintergrund des Klimawandels. Forstarchiv 80:15–22Google Scholar
  67. Schölch M, Arenhövel W, Frischbier N, Leder B, Mettendorf B, Schmiedinger A, Stimm B, Vor T, Aas G (2010) Anbauerfahrungen mit fremdländischen Baumarten bündeln—ein Beitrag zur richtigen Baumartenwahl. Forst Holz 65:22–26Google Scholar
  68. Senitza E (1989) Waldbauliche Grundlagen der Libanonzeder (Cedrus libani A. Rich.) im Westtaurus/Türkei. Dissertation der Universität für Bodenkultur in Wien 34, WienGoogle Scholar
  69. Sevim M (1952) Lübnan sedirinin (Cedrus libani Barr.) Türkiye’deki tabii yayilisi ve ekolojik sartlari. (Die natürliche Verbreitung und Standortsbedingungen der Libanonzeder (Cedrus libani Barr.) in der Türkei). Rev Fac Sci For Univ Istanb A2:19–46Google Scholar
  70. Sevim M (1955) Lübnan sedirinde yapilan bir kac gövde analizi ve sonuclari (Zuwachsverhältnisse der Libanonzeder). Rev Fac Sci For Univ Istanb A3:48–53Google Scholar
  71. Sökücü A (2010) Stem growth and water use dynamics of Cedrus libani A. RICH during summer in the Taurus Mountains, SW-Turkey, Diploma thesis, University of Hohenheim, Institute of Botany and Botanical Gardens, StuttgartGoogle Scholar
  72. Soldner M (2010) Homogenisierung der Bayreuther Klimadaten. Bachelor thesis, University of Bayreuth, Department of Micrometeorology, BayreuthGoogle Scholar
  73. Spittlehouse DL, Stewart RB (2003) Adaptation to climate change in forest management. BC J Ecosyst Manag 4(1):1–11Google Scholar
  74. STMELF (1979) Bayrischen Staatsministerium für Ernährung, Landwirtschaft und Forsten. Hilfstafeln für die Forsteinrichtung, MinisterialforstabteilungGoogle Scholar
  75. Touchan R, Xoplaki E, Funkhouser G, Luterbacher J, Hughes MK, Erkan N, Akkemik Ü, Stephan J (2005) Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Clim Dyn 25:75–98CrossRefGoogle Scholar
  76. Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26(9):1133–1147CrossRefGoogle Scholar
  77. Zahn V (2008) Auswirkungen des trockenen Sommers 2003 auf den Zuwachs ausgewählter Baumarten im ÖBG, thesis, University of Bayreuth, Ecological Botanical Gardens, BayreuthGoogle Scholar
  78. Zerbe S (2002) Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations. For Ecol Manage 167(1):27–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jana Messinger
    • 1
  • Aylin Güney
    • 2
  • Reiner Zimmermann
    • 2
  • Barbara Ganser
    • 3
  • Martin Bachmann
    • 4
  • Sabine Remmele
    • 2
  • Gregor Aas
    • 1
  1. 1.Ecological-Botanical GardensUniversity of BayreuthBayreuthGermany
  2. 2.Institute of Botany 210University of HohenheimStuttgartGermany
  3. 3.ÖkotoxzentrumEawag-EPFLDübendorfSwitzerland
  4. 4.Department for Food, Agriculture and ForestryBavarian Forest AdministrationEbersbergGermany

Personalised recommendations