European Journal of Forest Research

, Volume 134, Issue 3, pp 569–583 | Cite as

A disaggregated dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate oak stands in Galicia (NW Spain)

  • Esteban Gómez-García
  • Felipe Crecente-Campo
  • Marcos Barrio-Anta
  • Ulises Diéguez-Aranda
Original Paper


A model was developed for predicting current and future disaggregated volume, biomass and carbon stocks in even-aged pedunculate oak (Quercus robur L.) stands in Galicia (northwestern Spain). In the model, the stand state at any point in time is defined by age (A), dominant height (H), number of trees per hectare (N) and stand basal area (G). A dynamic model project H, N and G over time by using transition functions in algebraic difference form. A number of static relationships are used to estimate other quantities as functions of the stand state. A disaggregation system, which comprises a diameter distribution function and a generalized height–diameter relationship, enables prediction of the number of trees in each diameter class and their average height. A taper equation, developed in a previous study, is used to estimate total and merchantable volume. A set of additive equations is used to predict total aboveground biomass and biomass of different components. Finally, carbon stocks are predicted from the average C content (%) in the different biomass components. The equations in the model were developed under tenable statistical assumptions: a base-age invariant method, which accounted for autocorrelation, correlated errors and different number of observations between the transition functions; and simultaneous fitting of the biomass system, which accounted for heteroscedasticity and inherent correlations between biomass components and the lack of leaf data in some trees. Critical errors of 13, 16 and 11 % were obtained in H, N and G predictions for a projection interval of 3 to 9 years. Biomass equations explained between 78 and 98 % of the observed variability. The average amount of C stored was approximately 48 % of total dry biomass. The proposed model can be used by forest managers as part of a decision support system that enables consideration of production and environmental aspects related to climate change (biomass and C stocks).


Quercus robur L. Weighted regression Simultaneous fit Dummy variables Disaggregation system NSUR GMM C sequestration 



The present study was financially supported by the Spanish Ministry of Science and Innovation through the research Project “Modelos de evolución de bosques de frondosas autóctonas del noroeste peninsular” (AGL2007-66739-C02-01), co-financed by the European Union through the ERDF (European Regional Development Fund).


  1. Álvarez-González JG, Zingg A, Gadow KV (2010) Estimating growth in beech forests: a study based on long term experiments in Switzerland. Ann For Sci 67:307p1–307p13CrossRefGoogle Scholar
  2. Amateis RL (2000) Modeling response to thinning in loblolly pine plantations. South J Appl For 24:17–22Google Scholar
  3. Bailey RL, Clutter JL (1974) Base-age invariant polymorphic site curves. For Sci 20:155–159Google Scholar
  4. Bailey RL, Dell TR (1973) Quantifying diameter distributions with the Weibull function. For Sci 19:97–104Google Scholar
  5. Balboa-Murias MA, Rojo A, Álvarez JG, Merino A (2006) Carbon and nutrient stocks in mature Quercus robur L. stand in NW Spain. Ann For Sci 63:557–565CrossRefGoogle Scholar
  6. Barrio-Anta M (2003) Crecimiento y producción de masas naturales de Quercus robur L. en Galicia. Th. D. Escuela Politécnica Superior, Universidad de Santiago de Compostela. Lugo, SpainGoogle Scholar
  7. Barrio-Anta M, Álvarez González JG (2005) Development of a stand density management diagram for even-aged pedunculate oak stands and its use in designing thinning schedules. Forestry 78(3):209–216CrossRefGoogle Scholar
  8. Barrio-Anta M, Diéguez-Aranda U (2005) Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain). Eur J For Res 124:19–28CrossRefGoogle Scholar
  9. Barrio-Anta M, Castedo-Dorado F, Diéguez-Aranda U, Álvarez González JG, Parresol BR, Rodríguez R (2006) Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can J For Res 36:1461–1474CrossRefGoogle Scholar
  10. Barrio-Anta M, Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG, Gadow KV (2007) Merchantable volume system for pedunculate oak in northwestern Spain. Ann For Sci 64:511–520CrossRefGoogle Scholar
  11. Belsley DA (1991) Conditioning diagnostics, collinearity and weak data in regression. Wiley, New YorkGoogle Scholar
  12. Bertalanffy LV (1949) Problems of organic growth. Nature 163:156–158PubMedCrossRefGoogle Scholar
  13. Bertalanffy LV (1957) Quantitative laws in metabolism and growth. Q Rev Biol 32:217–231CrossRefGoogle Scholar
  14. Bi H (2004) Stochastic frontier analysis of a classic self-thinning experiment. Austral Ecol 29:408–417CrossRefGoogle Scholar
  15. Bi H, Turner J, Lambert M (2004) Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees 18:467–479CrossRefGoogle Scholar
  16. Bi H, Long Y, Turner J, Lei Y, Snowdon P, Li Y, Harper R, Zerihun A, Ximenes F (2010) Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations. For Ecol Manag 12:2301–2314CrossRefGoogle Scholar
  17. Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ, Gunia K (2012) Statistical mapping of tree species over Europe. Eur J For Res 131:145–157CrossRefGoogle Scholar
  18. Cao QV (2004) Predicting parameters of a Weibull function for modelling diameter distributions. For Sci 50:682–685Google Scholar
  19. Cao QV, Burkhart HE, Lemin RC (1982) Diameter distributions and yields of thinned loblolly pine plantations. School of Forestry and Wildlife Resources, VPI and SU, publication no. FSW-1-82Google Scholar
  20. Carmean WH (1972) Site index curves for upland oaks in central States. For Sci 18:109–120Google Scholar
  21. Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Sanchez Rodríguez M, Gadow KV (2006) A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. For Ecol Manag 229:202–213CrossRefGoogle Scholar
  22. Castedo-Dorado F, Diéguez-Aranda U, Álvarez González JG (2007a) A growth model for Pinus radiata D. Don stands in north-western Spain. Ann For Sci 64:453–465CrossRefGoogle Scholar
  23. Castedo-Dorado F, Diéguez-Aranda U, Barrio-Anta M, Álvarez González JG (2007b) Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann For Sci 64:609–619CrossRefGoogle Scholar
  24. Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, Barrio-Anta M, Crecente-Campo F (2012) Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Ann For Sci 69:735–746CrossRefGoogle Scholar
  25. Cieszewski CJ, Bailey RL (2000) Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For Sci 46:116–126Google Scholar
  26. Cieszewski CJ, Harrison M, Martin SW (2000) Practical methods for estimating non biased parameters in self-referencing growth and yield models. University of Georgia PMRC-TR 2000-7Google Scholar
  27. Clutter JL (1963) Compatible growth and yield models for loblolly pine. For Sci 9(3):354–371Google Scholar
  28. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL (1992) Timber management: a quantitative approach, 2nd edn. Krieger, MalabarGoogle Scholar
  29. Crecente-Campo F, Soares P, Tomé M, Diéguez-Aranda U (2010a) Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For Ecol Manag 260:1965–1974CrossRefGoogle Scholar
  30. Crecente-Campo F, Tomé M, Soares P, Diéguez-Aranda U (2010b) A generalized nonlinear mixed effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. For Ecol Manag 259:943–952CrossRefGoogle Scholar
  31. Díaz-Fernández PM, Jiménez Sancho P, Martín Albertos S, Tuero Yde, Reyna M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Quercus petraea (Matt.) Liebl. y Quercus humillis (Miller). Publicaciones del ICONA, MAPA, MadridGoogle Scholar
  32. Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG (2005a) Funciones de crecimiento en área basimétrica para masas de Pinus sylvestris L. procedentes de repoblación en Galicia. Invest Agrar Sist Recur For 14(2):253–266CrossRefGoogle Scholar
  33. Diéguez-Aranda U, Castedo-Dorado F, Álvarez González JG, Rodríguez Soalleiro R (2005b) Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur J For Res 124:143–153CrossRefGoogle Scholar
  34. Diéguez-Aranda U, Castedo-Dorado F, Álvarez-González JG, Rodríguez-Soalleiro R (2006a) Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Ecol Model 191:225–242CrossRefGoogle Scholar
  35. Diéguez-Aranda U, Grandas-Arias JA, Álvarez-González JG, Gadow KV (2006b) Site quality curves for birch stands in North-Western Spain. Silva Fenn 40(4):631–644CrossRefGoogle Scholar
  36. Diéguez-Aranda U, Rojo Alboreca A, Castedo-Dorado F, Álvarez-González JG, Barrio-Anta M, Crecente-Campo F, González González JM, Pérez-Cruzado C, Rodríguez Soalleiro R, López-Sánchez CA, Balboa-Murias MA, Gorgoso Varela JJ, Sánchez Rodríguez F (2009) Herramientas selvícolas para la gestión forestal sostenible en Galicia. Xunta de GaliciaGoogle Scholar
  37. Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  38. Dyer ME, Bailey RL (1987) A test of six methods for estimating true heights from stem analysis data. For Sci 33(1):3–13Google Scholar
  39. Fabbio G, Frattegiani M, Manetti MC (1994) Height estimation in stem analysis using second differences. For Sci 40:329–340Google Scholar
  40. Fang Z, Borders BE, Bailey RL (2000) Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For Sci 46:1–12Google Scholar
  41. Fernandez I, Carrasco B, Cabaneiro A (2012) Evolution of soil organic matter composition and edaphic carbon effluxes following oak forest clearing for pasture: climate change implications. Eur J For Res 131:1681–1693CrossRefGoogle Scholar
  42. Freese F (1960) Testing accuracy. For Sci 6:139–145Google Scholar
  43. Gadow KV (1996) Modelling growth in managed forests—realism and limits of lumping. Sci Total Environ 183:167–177CrossRefGoogle Scholar
  44. Gadow KV, Pukkala T (2008) Designing green landscapes. Managing forest ecosystems, vol 15. Springer, DordrechtCrossRefGoogle Scholar
  45. García O (1988) Growth modelling—a (re)view. N Z For 33(3):14–17Google Scholar
  46. García O (1990) Growth of thinned and pruned stands. In: James RÑ, Tarlton GL (eds) Proceedings of a IUFRO symposium on new approaches to spacing and thinning in plantation forestry. Rotorua, New Zealand, Ministry of Forestry, FRI Bulletin, vol 151, pp 84–97Google Scholar
  47. García O (1994) The state-space approach in growth modelling. Can J For Res 24:1894–1903CrossRefGoogle Scholar
  48. García O (1998) Estimating top height with variable plot sizes. Can J For Res 28:1509–1517CrossRefGoogle Scholar
  49. García O (2001) On bridging the gap between tree-level and stand-level models. In: Rennolls K (ed) Proceedings of IUFRO 4.11 conference. Forest Biometry, Modelling and Information Science. University of GreenwichGoogle Scholar
  50. García O (2003) Dimensionality reduction in growth models: an example. For Biom Model Inform Sci 1:1–15Google Scholar
  51. García O (2011) Dynamical implications of the variability representation in site-index modelling. Eur J For Res 130:671–675CrossRefGoogle Scholar
  52. GesMO support (2014) Descargar GesMO© 2012. Accessed 28 June 2014
  53. Giurgiu V, Decei I, Armasescu S (1972) The biometry of trees and stands in Rumania: forest mensuration tables. Ceres, BucharestGoogle Scholar
  54. Greene WH (1999) Econometric analysis, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  55. Hamilton CJ, Christie JM (1971) Forest management tables (metric). Forestry commission. Bloklet no. 34Google Scholar
  56. Hossfeld JW (1822) Mathematik für Forstmänner, Ökonomen und Cameralisten. Gotha, 4. Bd., S. 310Google Scholar
  57. Huang S (1999) Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework. In: Amaro A, Tomé M (eds) Empirical and process-based models for forest tree and stand growth simulation. Edições Salamandra–Novas Tecnologias, Lisbon, pp 61–98Google Scholar
  58. Huang S, Yang Y, Wang Y (2003) A critical look at procedures for validating growth and yield models. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CAB International, Wallingford, pp 271–293Google Scholar
  59. Kangas A (1997) On the prediction bias and variance in long-term growth projections. For Ecol Manag 96:207–216CrossRefGoogle Scholar
  60. Kozak A (1970) Methods of ensuring additivity of biomass components by regression analysis. For Chron 46(5):402–404CrossRefGoogle Scholar
  61. Kozak A (1988) A variable-exponent taper equation. Can J For Res 18:1363–1368CrossRefGoogle Scholar
  62. Krumland BE, Wensel LC (1988) A generalized height–diameter equation for coastal California species. West J Appl For 3:113–115Google Scholar
  63. Lappi J (1997) A longitudinal analysis of height/diameter curves. For Sci 43:555–570Google Scholar
  64. Lindner M, Karjalainen T (2007) Carbon inventory methods and carbon mitigation potentials of forests in Europe: a short review of recent progress. Eur J For Res 126:149–156CrossRefGoogle Scholar
  65. López Sánchez CA, Gorgoso JJ, Castedo-Dorado F, Rojo A, Rodríguez R, Álvarez González JG, Sánchez F (2003) A height-diameter model for Pinus radiata D. Don in Galicia (Northwest Spain). Ann For Sci 60:237–245CrossRefGoogle Scholar
  66. López-Senespleda E, Sánchez-Palomares O (2007) Modelo de calidad de estación y altura dominante para Quercus faginea Lam. en España. Cuadernos SECF 23:199–206Google Scholar
  67. Lundqvist B (1957) On the height growth in cultivated stands of pine and spruce in Northern Sweden, Medd. Fran Statens Skogforsk 47:1–64Google Scholar
  68. Mäkinen A, Kangas A, Kalliovirta J, Rasinmäki J, Välimäki E (2008) Comparison of treewise and standwise forest simulators by means of quantile regression. For Ecol Manag 255:2709–2717CrossRefGoogle Scholar
  69. MARM (2011) Cuarto Inventario Forestal Nacional—Galicia. Dirección General de Medio Natural y Política Forestal. Ministerio de Medio Ambiente, y Medio Rural y Marino, MadridGoogle Scholar
  70. Murphy PA, Farrar RM (1988) Basal area projection equations for thinned natural even aged forest stands. Can J For Res 18:827–832CrossRefGoogle Scholar
  71. Myers RH (1990) Classical and modern regression with applications, 2nd edn. Duxbury Press, BelmontGoogle Scholar
  72. Nabuurs GJ, Schelhaas MJ (2003) Spatial distribution of whole-tree carbon stocks and fluxes across the forests of Europe: where are the options for bio-energy? Biomass Bioenerg 24:311–320CrossRefGoogle Scholar
  73. Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. For Sci 37(1):368–369Google Scholar
  74. Oosterbaan A (1988) Opbrengsttabel voor zomereik (Quercus robur L.). Uitvoering verslag Rijksinstituut voor onderzoek in de bos en landschapsbouw “de Dorschkamp” Band 22(1). WageningenGoogle Scholar
  75. Pardé JD (1980) Forest biomass. For Abstr 41(8):343–362Google Scholar
  76. Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45:573–593Google Scholar
  77. Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878CrossRefGoogle Scholar
  78. Patenaudea G, Hillb RA, Milne R, Gaveaud DLA, Briggsa BBJ, Dawsona BBJ (2004) Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens Environ 93:368–380CrossRefGoogle Scholar
  79. Peet RK, Christensen NL (1987) Competition and tree death. Bioscience 37:586–595CrossRefGoogle Scholar
  80. Peng C, Zhang L, Huang S, Zhou X, Parton J, Woods M (2001) Developing ecoregion-based height–diameter models for jack pine and black spruce in Ontario. Forest research report 159. Ministry of Natural Resources, Ontario Forest Research Institute, OntarioGoogle Scholar
  81. Pienaar LV, Shiver BD (1981) Survival functions for site-prepared slash pine plantations in the flatwoods of Georgia and northern Florida. South J Appl For 5:59–62Google Scholar
  82. Pienaar LV, Shiver BD (1984) An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For Sci 30:933–942Google Scholar
  83. Pienaar LV, Turnbull KJ (1973) The Chapman-Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. For Sci 19:2–22Google Scholar
  84. Reque JA (2008) Selvicultura de Quercus petraea L. y Quercus robur L. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. INIA, Ministerio de Eduación y Ciencia, Madrid, pp 745–772Google Scholar
  85. Reynolds MR Jr (1984) Estimating the error in model predictions. For Sci 30:454–469Google Scholar
  86. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300CrossRefGoogle Scholar
  87. Ruíz de la Torre J (1979) Árboles y arbustos. Quercus robur L. Escuela Técnica Superior de Ingenieros de Montes, Madrid, pp 217–222Google Scholar
  88. Sambakhe D, Fortin M, Renaud JP, Deleuze C, Dreyfus P, Picard N (2014) Prediction bias induced by plot size in forest growth models. For Sci 60:1050–1059Google Scholar
  89. Sánchez-González M, Montero G, Tomé M (2005) Modelling height and diameter growth of dominant cork oak trees in Spain. Ann For Sci 62:633–643CrossRefGoogle Scholar
  90. SAS Institute Inc. (2008) SAS/ETS® 9.2. User’s Guide. SAS Institute Inc., Cary, NCGoogle Scholar
  91. SAS Institute Inc. (2010) Base SAS® 9.2 procedures guide: statistical procedures, 3rd edn. SAS Institute Inc., Cary, NCGoogle Scholar
  92. Satoo T, Madgwick HAI (1982) Forest biomass, forestry sciences. Kluwer Academic Publishers Group, HollandGoogle Scholar
  93. Schnute J (1981) A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 38:1128–1140CrossRefGoogle Scholar
  94. Schober R (1995) Ertragstafeln wichtiger Baumarten. J. D. Sauerländer’s Verlag, Frankfurt am Main, pp 12–151Google Scholar
  95. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  96. Sharma M, Parton J (2007) Height–diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For Ecol Manag 249:187–198CrossRefGoogle Scholar
  97. Sharma M, Zhang SY (2004) Height–diameter models using stand characteristics for Pinus banksiana and Picea mariana. Scand J For Res 19:442–451CrossRefGoogle Scholar
  98. Somogyi Z, Cienciala E, Mäkipää R, Muukkonen P, Lehtonen A, Weiss P (2007) Indirect methods of large-scale forest biomass estimation. Eur J For Res 126:197–207CrossRefGoogle Scholar
  99. Timbal J, Aussenac G (1996) An overview of ecology and silviculture of indigenous oaks in France. Ann For Sci 53:649–661CrossRefGoogle Scholar
  100. Tomé M (1988) Modelação do crescimento da árvore individual em povoamentos de Eucalyptus globulus Labill. (1ª rotação) na região centro de Portugal. Th. D. Instituto Superior de Agronomía, Universidade Técnica de Lisboa, Lisboa, PortugalGoogle Scholar
  101. Tomé M, Falcao A, Amaro A (1997) Globulus v.1.0.0: A regionalized growth model for eucalipt plantations in Portugal. In: Ortega A, Gezan S (eds) IUFRO conference: modelling growth of fast-grown tree species. 5–7 September, pp 138–145Google Scholar
  102. Vanclay JK (1994) Modelling forest growth and yield. Applications to mixed tropical forests. CAB International, WallingfordGoogle Scholar
  103. Vande Walle I, Mussche S, Samson R, Lust N, Lemeur R (2001) The above-and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Ann For Sci 58:507–517CrossRefGoogle Scholar
  104. Wang C (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forest. For Ecol Manag 222:9–16CrossRefGoogle Scholar
  105. Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  106. West PW, Ratkowsky DA, Davis AW (1984) Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For Ecol Manag 7:207–224CrossRefGoogle Scholar
  107. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4):817–838CrossRefGoogle Scholar
  108. Woollons RC (1998) Even-aged stand mortality estimation through a two-step regression process. For Ecol Manag 105:189–195CrossRefGoogle Scholar
  109. Yang RC, Kozak A, Smith JH (1978) The potential of Weibull-type functions as a flexible growth curve. Can J For Res 8:424–431CrossRefGoogle Scholar
  110. Yao X, Titus S, MacDonald SE (2001) A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can J For Res 31:283–291Google Scholar
  111. Zhang L (1997) Cross-validation of nonlinear growth functions for modeling tree height–diameter distributions. Ann Bot 79:251–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Esteban Gómez-García
    • 1
  • Felipe Crecente-Campo
    • 1
  • Marcos Barrio-Anta
    • 2
  • Ulises Diéguez-Aranda
    • 1
  1. 1.Departamento de Ingeniería Agroforestal, Escuela Politécnica SuperiorUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Departamento de Biología de Organismos y Sistemas, Escuela Politécnica de MieresUniversidad de OviedoMieresSpain

Personalised recommendations