European Journal of Forest Research

, Volume 134, Issue 3, pp 525–536 | Cite as

Is this the end? Dynamics of a relict stand from pervasively deforested ancient Iberian pine forests

  • G. Gea-Izquierdo
  • F. Montes
  • R. G. Gavilán
  • I. Cañellas
  • A. Rubio
Original Paper

Abstract

A drier climate together with intense management can be detrimental for species when they are found at their xeric limit. We analyzed the dynamics of Pinus sylvestris in Central Spain in relation to colonization by more drought-tolerant Quercus pyrenaica. The studied forest presents high biodiversity and is one of the last stands relict from a widespread pine-dominated forest in West-Central Iberian Mountains demised by human deforestation. The observed age patterns could suggest a natural regeneration origin of the current stand for both species. However, while oaks regenerated continuously since the 1950s, there was almost no pine regeneration after the 1870s. Therefore, the lack of pine regeneration was previous to recent climatic changes. Pine stands with ongoing oak colonization were likely thinned in the 1920s in opposition to pure pine stands. Mixed and pure stands expressed certain differences in their response to climate. Pines suffered more from high temperatures from spring to fall, which would reflect their lower tolerance to drought than oaks. Cross-wavelet analysis showed that pine exhibited an increase in their sensitivity to drought intensity in the last years. However, the dominant pine canopy established in the nineteenth century does not show symptoms of growth decline in response to climate change. The factors determining the disruption of pine regeneration need to be determined. Management could have played a dominant role constraining stand dynamics, threatening pine sustainability through modifications of the understory vegetation and soil properties.

Keywords

Mediterranean Forest management Land-use changes Quercus pyrenaica Pinus sylvestris Pine–oak 

References

  1. Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641Google Scholar
  2. Andrade A, González-Jonet RH (2007) El pinar de Hoyocasero (Ávila): ¿antigua repoblación o pinar natural conservado? Anal Biol 29:33–51Google Scholar
  3. Andreu L, Gutierrez E, Macias M, Ribas M, Bosch O, Camarero JJ (2007) Climate increases regional tree-growth variability in Iberian pine forests. Glob Change Biol 13(4):804–815Google Scholar
  4. Benavides R, Rabasa SG, Granda E, Escudero A, Hodar JA, Martinez-Vilalta J, Rincon AM, Zamora R, Valladares F (2013) Direct and indirect effects of climate on demography and early growth of Pinus sylvestris at the rear edge: changing roles of biotic and abiotic factors. PLoS One 8(3):e59824CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bigler C, Braker OU, Bugmann H, Dobbertin M, Rigling A (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343CrossRefGoogle Scholar
  6. Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–740CrossRefGoogle Scholar
  7. Carrión JS (ed) (2012) Paleoflora y Paleovegetación de la Península Ibérica y. Plioceno-Cuaternario, BalearesGoogle Scholar
  8. Castro J, Zamora R, Hodar JA, Gomez JM (2004) Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 92:266–277CrossRefGoogle Scholar
  9. Castro J, Zamora R, Hodar JA, Gomez JM (2005) Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecol 181:191–202CrossRefGoogle Scholar
  10. Cavard X, Bergeron Y, Chen HYH, Pare D, Laganiere J, Brassard B (2011) Competition and facilitation between tree species change with stand development. Oikos 120:1683–1695CrossRefGoogle Scholar
  11. Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manage 102(2–3):213–223CrossRefGoogle Scholar
  12. Chauchard S, Carcaillet C, Guibal F (2007) Patterns of land-use abandonment control tree-recruitment and forest dynamics in mediterranean mountains. Ecosystems 10:936–948CrossRefGoogle Scholar
  13. Choat B, Jansen S, Brodribb TJ et al (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755PubMedGoogle Scholar
  14. Couder G (1892) Distrito forestal de Avila. Memoria justificativa del Plan de aprovechamiento para el año forestal de 1892 á 1893. [Ávila, 30-IV-1892]. MSS. Arch. MAPA, Montes, leg. 87/7Google Scholar
  15. D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the `Divergence Problem’ in Northern Forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305CrossRefGoogle Scholar
  16. Del Río M, Schütze G, Pretzsch H (2014) Temporal variation of competition and facilitation in mixed species forests in Central Europe. Plant Biol 16:166–176CrossRefGoogle Scholar
  17. Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G (2010) Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy. Ann For Sci 67:706CrossRefGoogle Scholar
  18. Díaz-Pinés E, Rubio A, Van Miegroet H, Benito M, Montes F (2011) Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For Ecol Manage 262(10):1895–1904CrossRefGoogle Scholar
  19. Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020CrossRefPubMedGoogle Scholar
  20. Franco Múgica F, Anton MG, Ollero HS (1998) Vegetation dynamics and human impact in the Sierra de Guadarrama, Central System, Spain. Holocene 8:69–82CrossRefGoogle Scholar
  21. Fritts HC (1976) Tree rings and climate. Blackburn Press, Caldwell, p 567Google Scholar
  22. Galiano L, Martinez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of scots pine in the pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991CrossRefGoogle Scholar
  23. García Ortíz, A (1873) Distrito forestal de Ávila. Memoria de la ejecución del plan de aprovechamiento formado para el año forestal de 1872-73. [Ávila, 15-IX-1873]. MSS. Arch. MAPA, Montes, leg. 1/4Google Scholar
  24. García-Ruiz JM, Lopez-Moreno JI, Vicente-Serrano SM, Lasanta-Martinez T, Begueria S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105:121–139CrossRefGoogle Scholar
  25. Gavilán RG (2005) The use of climatic parameters and índices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50:111–120CrossRefPubMedGoogle Scholar
  26. Gea-Izquierdo G, Cañellas I (2014) Contrasting instability in growth trends of Mediterranean oaks at opposite distributional limits. Ecosystems 17:228–241CrossRefGoogle Scholar
  27. Gea-Izquierdo G, Martín-Benito D, Cherubini P, Cañellas I (2009) Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66:802CrossRefGoogle Scholar
  28. Gea-Izquierdo G, Fonti P, Cherubini P, Martín-Benito D, Chaar H, Cañellas I (2012) Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol 32:401–413CrossRefPubMedGoogle Scholar
  29. Gea-Izquierdo G, Viguera B, Cabrera M, Cañellas I (2014) Drought induced decline could portend widespread oak mortality at the xeric ecotone in managed Mediterranean pine-oak woodlands. For Ecol Manag 320:70–82CrossRefGoogle Scholar
  30. Génova M, Gómez F, Morla C (eds.) (2009) Los bosques de Gredos a través del tiempo. Monografías de la Red de Espacios Naturales de Castilla y León. Serie Técnica: Junta de Castilla y León. Valladolid. 320 pGoogle Scholar
  31. González-Bueno A, Sánchez-Mata D (2007) El Pinar de Hoyocasero: análisis histórico de su utilización. In: Ávila en el tiempo. Homenaje al profesor Ángel Barrios 2: 55–84. Diputación de Ávila. ÁvilaGoogle Scholar
  32. Gotway CA, Stroup WW (1997) A generalized linear model approach to spatial data analysis and prediction. J Agric Biol Environ Stat 2:157–178CrossRefGoogle Scholar
  33. Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of cross-variogram matrix. Math Geol 24:269–286CrossRefGoogle Scholar
  34. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc Geophys 11:561–566CrossRefGoogle Scholar
  35. He Q, Bertness MD (2014) Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95(6):1437–1443CrossRefPubMedGoogle Scholar
  36. Herrera et al (2012) Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain. Int J Climatol 32:74–85CrossRefGoogle Scholar
  37. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  38. Lebourgeois F, Gomez N, Pinto P, Merian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. Forest Ecol Manage 303(9):61–71CrossRefGoogle Scholar
  39. Lookingbill TR, Zavala MA (2000) Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J Veg Sci 11(4):607–612CrossRefGoogle Scholar
  40. Lopez-Merino L, Lopez-Saez JA, Alba-Sanchez F, Perez-Diaz S, Carrion JS (2009) 2000 years of pastoralism and fire shaping high-altitude vegetation of Sierra de Gredos in central Spain. Rev Palaeobot Palynol 158:42–51CrossRefGoogle Scholar
  41. López-Sáez JA, Abel-Schaad D, Pérez-Díaz S, Blanco-González A, Alba-Sánchez F, Dorado M, Ruiz-Zapata B, Gil-García MJ, Gómez-González C, Franco-Múgica F (2014) Vegetation history, climate and human impact in the Spanish central system over the last 9000 years. Quat Int. doi:10.1016/j.quaint.2013.06.034 Google Scholar
  42. Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205CrossRefGoogle Scholar
  43. Mancebo JM, Molina JR, Camino F (1993) Pinus sylvestris L. en la vertiente septentrional de la sierra de Gredos (Ávila). Ecología 7:233–245Google Scholar
  44. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  45. Mölder I, Leuschner C (2014) European beech grows better and is less drought sensitive in mixed than in pure stands: tree neighbourhood effects on radial increment. Trees 28(3):777–792CrossRefGoogle Scholar
  46. Montes F, Ledo A (2010) Incorporating environmental and geographical information in forest data analysis: a new fitting approach for universal kriging. Can J For Res 40:1852–1861CrossRefGoogle Scholar
  47. Neuman SP, Jacobson EA (1984) Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels. J Int Assoc Math Geol 16:499–521CrossRefGoogle Scholar
  48. Nowacki GJ, Abrams MD (1997) Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol Monograph 67:225–249Google Scholar
  49. Portalbes A (1952) Maestros mayores, arquitectos y aparejadores de El Escorial. Ed. Rollán, MadridGoogle Scholar
  50. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495CrossRefPubMedGoogle Scholar
  51. Pulido FJ, Diaz M (2005) Regeneration of a Mediterranean oak: a whole-cycle approach. Ecoscience 12(1):92–102CrossRefGoogle Scholar
  52. R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org/
  53. Richter K, Eckstein D, Holmes RL (1991) The dendrochronological signal of pine trees (Pinus spp.) in Spain. Tree-Ring Bull 51:2–13Google Scholar
  54. Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Change Biol 19:229–240CrossRefGoogle Scholar
  55. Rinntech (2003) TSAP-WIN. Time series analysis and presentation for dendrochronology and related applications, Version 0.53Google Scholar
  56. Rodríguez C, Montes F, Ruiz F, Cañellas I, Pita P (2014) Stem mapping and estimating standing volume from stereoscopic hemispherical images. Eur J For Res. doi:10.1007/s10342-014-0806-6 Google Scholar
  57. Rozas V, Lamas S, Garcia-Gonzalez I (2009) Differential tree-growth responses to local and large-scale climatic variation in two Pinus and two Quercus species in northwest Spain. Ecoscience 16:299–310CrossRefGoogle Scholar
  58. Rubiales JM, Garcia-Amorena I, Genova M, Manzaneque FG, Morla C (2007) The Holocene history of highland pine forests in a submediterranean mountain: the case of Gredos mountain range (Iberian Central range, Spain). Quat Sci Rev 26(13–14):1759–1770CrossRefGoogle Scholar
  59. Rubiales JM, Morales-Molino C, Garcia Alvarez S, Garcia-Anton M (2012) Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective. Veg Hist Archaeobot 21:397–412CrossRefGoogle Scholar
  60. Rubio A, Gavilán RG, Montes F, Gutiérrez-Girón A, Díaz-Pines E, Mezquida ET et al (2011) Biodiversity measures applied to stand-level management: can they really be useful? Ecol Indicat 11:545–556CrossRefGoogle Scholar
  61. Ruiz-Labourdette D, Nogues-Bravo D, Sainz Ollero H, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39(1):162–176CrossRefGoogle Scholar
  62. Sarris D, Christodoulakis D, Korner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223CrossRefGoogle Scholar
  63. Soliveres S, Maestre FT (2014) Plant–plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Perspect Plant Ecol Evol Syst 16(4):154–163CrossRefGoogle Scholar
  64. Stein A, Corsten LCA (1991) Universal kriging and cokriging as a regression procedure. Biometrics 47:575–587CrossRefGoogle Scholar
  65. Sthultz CM, Gehring CA, Whitham TG (2007) Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semiarid woodland. New Phytol 173:135–145CrossRefPubMedGoogle Scholar
  66. Tessier L, Nola P, Serrebachet F (1994) Deciduous Quercus in the Mediterranean region—tree-ring/climate relationships. New Phytol 126:355–367CrossRefGoogle Scholar
  67. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250CrossRefPubMedCentralPubMedGoogle Scholar
  68. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  69. Valbuena-Carabaña M, de Heredia UL, Fuentes-Utrilla P, Gonzalez-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162:492–506CrossRefGoogle Scholar
  70. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A Multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index—SPEI. J Clim 23(7):1696–1718CrossRefGoogle Scholar
  71. Vila-Cabrera A, Martinez-Vilalta J, Galiano L, Retana J (2013) Patterns of forest decline and regeneration across scots pine populations. Ecosystems 16:323–335CrossRefGoogle Scholar
  72. Wackernagel H (1995) Multivariate geostatistics. Springer, New YorkCrossRefGoogle Scholar
  73. Weber P, Rigling A, Bugmann H (2008) Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: a modelling study. Ecol Model 210:301–311CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • G. Gea-Izquierdo
    • 1
  • F. Montes
    • 2
  • R. G. Gavilán
    • 3
  • I. Cañellas
    • 2
  • A. Rubio
    • 4
  1. 1.CEREGE UMR 7330CNRS/Aix-Marseille UniversitéAix-en-Provence Cedex 4France
  2. 2.INIA-CIFORMadridSpain
  3. 3.Facultad de FarmaciaUPM, Ciudad Universitaria s.n.MadridSpain
  4. 4.ETSI MontesUPM, Ciudad Universitaria s.n.MadridSpain

Personalised recommendations