European Journal of Forest Research

, Volume 134, Issue 2, pp 293–308 | Cite as

Unfavourable microsites, competing vegetation and browsing restrict post-disturbance tree regeneration on extreme sites in the Northern Calcareous Alps

  • Gisela PröllEmail author
  • Andras Darabant
  • Georg Gratzer
  • Klaus Katzensteiner
Original Paper


Changing natural disturbance regimes threaten forest functions in the Northern Calcareous Alps, with steep, sun-exposed sites on shallow soils at particular risk due to inhibited recovery. Natural tree regeneration after severe disturbances may fail due to extreme microclimate, dense layers of competing understorey vegetation and herbivory. In order to gain insight into regeneration patterns and dynamics, chronosequences of disturbed forest sites were selected along a longitudinal section of the Austrian Northern Calcareous Alps. Regeneration densities of trees, cover of competing vegetation and microsite characteristics were recorded on a total of 19 disturbed sites and in the respective adjacent forest stands. Although high densities of germinants and small seedlings (≤0.1 m) were recorded in the forest stands, recruitment establishment (trees >0.1 m) frequently failed on both disturbed sites and adjacent stands. In fact, half of the disturbed sites were found to be without sufficient regeneration and no significant increase of regeneration density was detected with time since disturbance. Overall, regeneration densities reflect a very critical situation along the disturbance chronosequence. Even if seedling banks are composed of individuals smaller than 0.1 m, seedling mortality is high. General linear mixed models revealed positive effects of convex microsites and thick organic layers on Picea abies (L.) Karst. establishment, while dense litter and grass cover impaired spruce regeneration. Regeneration of other tree species was scarce. The results corroborate the urgent need for establishing seedling banks of larger individuals (>0.1 m) and for reducing ungulate browsing. They also underline the need for comprehensive long-term studies to better understand the dynamic processes, driving resilience of disturbed sites.


Forest dynamics Natural regeneration densities Resilience Rendzic Leptosols Picea abies 



We thank the provincial governments of Tyrol, Salzburg, Upper Austria, Styria and Vienna and the Austrian Federal Forests Inc., (Österreichische Bundesforste AG) for financial support, assistance with the identification of suitable sites and for providing site history information. The project was jointly funded by the European Regional Development Fund of the European Union and national sources. In particular, we would like to acknowledge substantial contributions by Werner Fleck, Dieter Stöhr, Hubert Gugganig, Florian Linko, Thomas Hofer and Hermann Haubenberger. We are further obliged to Sangay Dorji and Christian Köfler for the great team work during data collection. Many thanks to Otto Eckmüllner and Birgit Reger for help with data editing and Bradley Matthews with the English. Finally, we thank two anonymous reviewers who helped to improve this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ammer C (1996) Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. For Ecol Manage 88(1–2):43–53CrossRefGoogle Scholar
  2. Attiwill PM (1994) The disturbance of forest ecosystems: the ecological basis for conservative management. For Ecol Manage 63(2):247–300CrossRefGoogle Scholar
  3. Aussenac G (2000) Interactions between forest stands and microclimate: ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301CrossRefGoogle Scholar
  4. Baier R, Ettl R, Hahn C, Göttlein A (2006) Early development and nutrition of Norway spruce (Picea abies (L.) Karst.) seedlings on different seedbeds in the Bavarian limestone Alps—a bioassay. Ann For Sci 63:339–348CrossRefGoogle Scholar
  5. Baier R, Meyer J, Göttlein A (2007) Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. Eur J For Res 126:11–22CrossRefGoogle Scholar
  6. Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R package version: 0.999999-0. R Foundation for Statistical Computing, ViennaGoogle Scholar
  7. Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419CrossRefGoogle Scholar
  8. Bochter R, Neuerburg W, Zech W (1981) Humus und Humusschwund im Gebirge. Forschber 2, Natlpark BerchtesgadenGoogle Scholar
  9. Bormann B, Spaltenstein H, McClellan M, Ugolini F, Cromack K Jr, Nay S (1995) Rapid soil development after windthrow disturbance in pristine forests. J Ecol 83:747–757CrossRefGoogle Scholar
  10. Brang P (1998) Early seedling establishment of Picea abies in small forest gaps in the Swiss Alps. Can J For Res 28(4):626–639CrossRefGoogle Scholar
  11. Brang P (2001) Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. For Ecol Manage 145:107–119CrossRefGoogle Scholar
  12. Brang P, Duc P (2002) Zu wenig Verjüngung im Schweizer Gebirgs-Fichtenwald: Nachweis mit einem neuen Modellansatz. Schweiz Z Forstwes 153(6):219–227CrossRefGoogle Scholar
  13. Canham CD, Marks PL (1985) The response of woody plants to disturbance: Patterns of establishment and growth. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp 197–217Google Scholar
  14. Catovsky S, Bazzaz FA (2000) The role of resource interactions and seedling regeneration in maintaining a positive feedback in hemlock stands. J Ecol 88:100–112CrossRefGoogle Scholar
  15. Clark J, Beckage B, Camill P, Cleveland B, HilleRisLambers J, Lichter J, McLachlan J, Mohan J, Wyckoff P (1999) Interpreting recruitment limitation in forests. Am J Bot 86(1):1–16CrossRefPubMedGoogle Scholar
  16. Clinton BD, Baker CR (2000) Catastrophic windthrow in the southern Appalachians: characteristics of pits and mounds and initial vegetation responses. For Ecol Manage 126(1):51–60CrossRefGoogle Scholar
  17. Coates KD (2002) Tree recruitment in gaps of various size, clearcuts and undisturbed mixed forest of interior British Columbia, Canada. For Ecol Manage 155:387–398CrossRefGoogle Scholar
  18. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51:723–734CrossRefGoogle Scholar
  19. Darabant A, Rai PB, Tenzin K, Roder W, Gratzer G (2007) Cattle grazing facilitates tree regeneration in a conifer forest with palatable bamboo understory. For Ecol Manage 252(1–3):73–83CrossRefGoogle Scholar
  20. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534CrossRefGoogle Scholar
  21. Diaci J (2002) Regeneration dynamics in a Norway spruce plantation on a silver fir-beech forest site in the Slovenian Alps. For Ecol Manage 161:27–38CrossRefGoogle Scholar
  22. Diaci J, Pisek R, Boncina A (2005) Regeneration in experimental gaps of subalpine Picea abies forest in the Slovenian Alps. Eur J For Res 124:29–36CrossRefGoogle Scholar
  23. Dorren LKA, Berger F, Imeson AC, Maier B, Rey F (2004) Integrity, stability and management of protection forests in the European Alps. For Ecol Manage 195:165–176CrossRefGoogle Scholar
  24. Dovčiak M, Hrivnák R, Ujházy K, Gömöry D (2008) Seed rain and environmental controls on invasion of Picea abies into grassland. Plant Ecol 194(1):135–148CrossRefGoogle Scholar
  25. Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364CrossRefGoogle Scholar
  26. FAO (IUSS Working Group WRB) (2006) World reference base for soil resources. World soil resources reports 103. FAO, RomeGoogle Scholar
  27. Firm D, Nagel TA, Diaci J (2009) Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian Alps. For Ecol Manage 257(9):1893–1901CrossRefGoogle Scholar
  28. Fischer A, Fischer HS (2012) Individual-based analysis of tree establishment and forest stand development within 25 years after wind throw. Eur J For Res 131(2):493–501CrossRefGoogle Scholar
  29. Fischer A, Jehl H (1999) Vegetationsentwicklung auf Sturmwurfflächen im Nationalpark Bayerischer Wald aus dem Jahre 1983. Forstl Forschber Münch 176:93–101Google Scholar
  30. Franklin JF, Spies TA, Pelt RV, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K, Chen J (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423CrossRefGoogle Scholar
  31. Frelich LE (2002) Forest dynamics and disturbance regimes: studies from temperate evergreen-deciduous forests. Cambridge University Press, New YorkCrossRefGoogle Scholar
  32. Gardiner B, Blennow K, Carnus JM, Fleischer P et al (2010) Destructive storms in European Forests: past and forthcoming impacts. Final report to European Commission—DG EnvironmentGoogle Scholar
  33. George LO, Bazzaz FA (1999) The fern understory as an ecological filter: emergence and establishment of canopy-tree seedlings. Ecology 80(3):833–845CrossRefGoogle Scholar
  34. Glatzel G (1968) Probleme der Beurteilung der Ernährungssituation von Fichte auf Dolomitböden. Mitt Österr Bodenkdl Ges 12:14–46Google Scholar
  35. Gratzer G, Canham C, Dieckmann U, Fischer A, Iwasa Y, Law R, Lexer MJ, Sandmann H, Spies TA, Splechtna BE, Szwagrzyk J (2004) Spatio-temporal development of forests—current trends in field methods and models. Oikos 107(1):3–15CrossRefGoogle Scholar
  36. Gray AN, Spies TA (1997) Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78(8):2458–2473CrossRefGoogle Scholar
  37. Greene DF, Zasada JC, Sirois L, Kneeshaw D, Morin H, Charron I, Simard MJ (1999) A review of the regeneration dynamics of North American boreal forest tree species. Can J For Res 29(6):824–839CrossRefGoogle Scholar
  38. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52(1):107–145CrossRefGoogle Scholar
  39. Gunderson LH (2000) Ecological resilience—in theory and application. Annu Rev Ecol Syst 31:425–439Google Scholar
  40. Guo D, Mou P, Jones R, Mitchell R (2004) Spatio-temporal patterns of soil available nutrients following experimental disturbance in a pine forest. Oecologia 138(4):613–621CrossRefPubMedGoogle Scholar
  41. Hanssen KH (2003) Natural regeneration of Picea abies on small clear-cuts in SE Norway. For Ecol Manage 180(1–3):199–213CrossRefGoogle Scholar
  42. Harflinger O, Knees G (1999) Klimahandbuch der österreichischen Bodenschätzung. Österr Bodenkdl Ges, ViennaGoogle Scholar
  43. Holgén P, Hånell B (2000) Performance of planted and naturally regenerated seedlings in Picea abies-dominated shelterwood stands and clearcuts in Sweden. For Ecol Manage 127:129–138CrossRefGoogle Scholar
  44. Hughes JW, Bechtel DA (1997) Effect of distance from forest edge on regeneration of red spruce and balsam fir in clearcuts. Can J For Res 27:2088–2096CrossRefGoogle Scholar
  45. Hunziker U, Brang P (2005) Microsite patterns of conifer seedling establishment and growth in a mixed stand in the southern Alps. For Ecol Manage 210(1):67–79CrossRefGoogle Scholar
  46. Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5(7):365–374CrossRefGoogle Scholar
  47. Johnson EA, Fryer GI (1992) Physical characterization of seed microsites—movement on the ground. J Ecol 80:823–836CrossRefGoogle Scholar
  48. Katzensteiner K (2000) Wasser- und Stoffhaushalt von Waldökosystemen in den Nördlichen Kalkalpen. Forstliche Schriftenreihe 15. Österr Ges F Waldökosystemforschung und Experimentelle Baumforschung, Universität für Bodenkultur, WienGoogle Scholar
  49. Katzensteiner K (2003) Effects of harvesting on nutrient leaching in a Norway spruce (Picea abies Karst.) ecosystem on a Lithic Leptosol in the Northern Limestone Alps. Plant Soil 250:59–73CrossRefGoogle Scholar
  50. Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests? Ecol Monogr 75(1):103–118CrossRefGoogle Scholar
  51. Kilian W, Müller F, Starlinger F (1994) Die forstlichen Wuchsgebiete Österreichs. Eine Naturraumgliederung nach waldökologischen Gesichtspunkten. Report, vol 82. Austrian Research Centre for Forests, ViennaGoogle Scholar
  52. Kralik M (2001) Strategie zum Schutz der Karstwassergebiete in Österreich. BE-189. Umweltbundesamt (Environment Agency Austria), WienGoogle Scholar
  53. Krueger LM, Peterson CJ (2006) Effects of white-tailed deer on Tsuga canadensis regeneration: evidence of microsites as refugia from browsing. Am Midl Nat 156(2):353–362CrossRefGoogle Scholar
  54. Kulakowski D, Matthews C, Jarvis D, Veblen TT (2013) Compounded disturbances in sub-alpine forests in western Colorado favour future dominance by quaking aspen (Populus tremuloides). J Veg Sci 24(1):168–176CrossRefGoogle Scholar
  55. Kupferschmid AD, Bugmann H (2005) Effect of microsites, logs and ungulate browsing on Picea abies regeneration in a mountain forest. For Ecol Manage 205:251–265CrossRefGoogle Scholar
  56. Kutter M, Gratzer G (2006) Neue Methoden zur Abschätzung der Samenverbreitungsdistanzen von Waldbäumen am Beispiel der Verbreitung von Picea abies, Abies alba und Fagus sylvatica. Austrian J For Sci (Cent bl gesamte Forstwes) 123:103–120Google Scholar
  57. Kuuluvainen T, Kalmari R (2003) Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Ann Bot Fenn 40:401–413Google Scholar
  58. Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Ann For Sci 71(2):173–186CrossRefGoogle Scholar
  59. Larcher W (2003) Physiological plant ecology—ecophysiology and stress physiology of functional groups. Springer, BerlinGoogle Scholar
  60. Li MH, Yang J, Kräuchi N (2003) Growth responses of Picea abies and Larix decidua to elevation in subalpine areas of Tyrol, Austria. Can J For Res 33:653–662CrossRefGoogle Scholar
  61. Lieffers VJ, MacDonald SE, Hogg EH (1993) Ecology of and control strategies for Calamagrostis canadensis in boreal forest sites. Can J For Res 23:2070–2077CrossRefGoogle Scholar
  62. Lienert GA (1978) Verteilungsfreie Methoden in der Biostatistik. Verlag Hain, Meisenheim am GlanGoogle Scholar
  63. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259(4):698–709CrossRefGoogle Scholar
  64. Mayer H (1980/1981) Zur Optimierung ökologischer, waldbaulicher und ökonomischer Faktoren in der Forstwirtschaft Österreichs. Int Holzmarkt 6–8, 12–19Google Scholar
  65. Moloney KA, Levin SA (1996) The effects of disturbance architecture on landscape-level population dynamics. Ecology 77:375–394Google Scholar
  66. Moser B, Schütz M, Hindenlang KE (2008) Resource selection by roe deer: are windthrow gaps attractive feeding places? For Ecol Manage 255(3–4):1179–1185CrossRefGoogle Scholar
  67. Muller-Landau HC, Wright SJ, Calderon O, Hubbell SP, Foster RB (2002) Assessing recruitment limitation: concepts, methods and case-studies from a tropical forest. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, Wallingford, pp 35–53Google Scholar
  68. Nagel TA, Svoboda M, Diaci J (2006) Regeneration patterns after intermediate wind disturbance in an old-growth Fagus–Abies forest in southeastern Slovenia. For Ecol Manage 226(1–3):268–278CrossRefGoogle Scholar
  69. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142CrossRefGoogle Scholar
  70. Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol Evol 15(7):278–285CrossRefPubMedGoogle Scholar
  71. Ott E, Frehner M, Frey HU, Lüscher P (1997) Gebirgsnadelwälder. Ein praxisorientierter Leitfaden für eine standortgerechte Waldbehandlung [Coniferous Mountain Forests. Practical guidelines for site-adapted silvicultural treatments]. Paul Haupt, WienGoogle Scholar
  72. Pardos M, Ruiz del Castillo J, Cañellas I, Montero G (2005) Ecophysiology of natural regeneration of forest stands in Spain. Invest Agrar Sist Recur For 14(3):434–445CrossRefGoogle Scholar
  73. Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, OrlandoGoogle Scholar
  74. Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22(15–16):1193–1200CrossRefPubMedGoogle Scholar
  75. Prietzel J, Ammer C (2007) Montane Bergmischwälder der Bayerischen Kalkalpen: Reduktion der Schalenwilddichte steigert nicht nur den Verjüngungserfolg, sondern auch die Bodenfruchtbarkeit. Allg Forst- u J-Ztg 179:105–113Google Scholar
  76. Priewasser K (2013) Factors influencing tree regeneration after windthrow in Swiss Forests. Dissertation, University of ZurichGoogle Scholar
  77. Reimoser F, Gossow H (1996) Impact of ungulates on forest vegetation and its dependence on the silvicultural system. For Ecol Manage 88(1–2):107–119CrossRefGoogle Scholar
  78. Royo AA, Carson WP (2006) On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36:1345–1362CrossRefGoogle Scholar
  79. Sakals ME, Innes JL, Wilford DJ, Sidle RC, Grant GE (2006) The role of forests in reducing hydrogeomorphic hazards. For Snow Landsc Res 80(1):11–22Google Scholar
  80. Šamonil P, Antolík L, Svoboda M, Adam D (2009) Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For Ecol Manage 257(3):1148–1156CrossRefGoogle Scholar
  81. Schaetzl RJ, Johnson DL, Burns SF, Small TW (1989) Tree uprooting: review of terminology, process, and environmental implications. Can J For Res 19(1):1–11CrossRefGoogle Scholar
  82. Schaetzl RJ, Burns SF, Small TW, Johnson DL (1990) Tree uprooting: review of types and patterns of soil disturbance. Phys Geogr 11(3):277–291Google Scholar
  83. Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9(11):1620–1633CrossRefGoogle Scholar
  84. Scherzinger W (1996) Naturschutz im Wald: Qualitätsziel einer dynamischen Waldentwicklung. Praktischer Naturschutz, Eugen Ulmer, Stuttgart-HohenheimGoogle Scholar
  85. Schodterer H (2011) Verjüngung im österreichischen Wald: Defizite im Schutzwald. BFW-Praxisinformation 24:10–14Google Scholar
  86. Schönenberger W (2002) Post windthrow stand regeneration in Swiss mountain forests: the first ten years after the 1990 storm Vivian. For Snow Landsc Res 77:61–80Google Scholar
  87. Schönenberger W, Noack A, Thee P (2005) Effect of timber removal from windthrow slopes on the risk of snow avalanches and rockfall. For Ecol Manage 213(1–3):197–208CrossRefGoogle Scholar
  88. Schubert G (2000) Water resources—drinking water. Mitt Österr Geol Ges 92:295–311Google Scholar
  89. Schupp EW (1995) Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82:399–409Google Scholar
  90. Seidl R, Schelhaas M-J, Lexer MJ (2011a) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biol 17(9):2842–2852CrossRefGoogle Scholar
  91. Seidl R, Rammer W, Lexer M (2011b) Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim Change 106(2):225–254CrossRefGoogle Scholar
  92. Senn J, Wasem U, Odermatt O (2002) Impact of browsing ungulates on plant cover and tree regeneration in windthrow areas. For Snow Landsc Res 77(1/2):161–170Google Scholar
  93. Simon A, Gratzer G, Sieghardt M (2011) The influence of windthrow microsites on tree regeneration and establishment in an old growth mountain forest. For Ecol Manage 262(7):1289–1297CrossRefGoogle Scholar
  94. Splechtna BE, Gratzer G (2005) Natural disturbances in Central European forests: approaches and preliminary results from Rothwald, Austria. For Snow Landsc Res 79:57–67Google Scholar
  95. Streit K, Wunder J, Brang P (2009) Slit-shaped gaps are a successful silvicultural technique to promote Picea abies regeneration in mountain forests of the Swiss Alps. For Ecol Manage 257(9):1902–1909CrossRefGoogle Scholar
  96. Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus—site, climatic sensitivity and growth trends. J Ecol 92(6):954–966CrossRefGoogle Scholar
  97. Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J (2010) Natural development and regeneration of a Central European montane spruce forest. For Ecol Manage 260(5):707–714CrossRefGoogle Scholar
  98. Szwagrzyk J, Szewczyk J, Bodziarczyk J (2001) Dynamics of seedling banks in beech forest: results of a 10-year study on germination, growth and survival. For Ecol Manage 141(3):237–250CrossRefGoogle Scholar
  99. Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manage 307:293–302CrossRefGoogle Scholar
  100. Titus BD, Roberts BA, Deering KW (1998) Nutrient removals with harvesting and by deep percolation from white birch (Betula papyrifera [Marsh.]) sites in central Newfoundland. Can J Soil Sci 78(1):127–137CrossRefGoogle Scholar
  101. Turner MG (2010) Disturbance and landscape dynamics in a changing world. Ecology 91(10):2833–2849CrossRefPubMedGoogle Scholar
  102. Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1(6):511–523CrossRefGoogle Scholar
  103. Ulanova NG (2000) The effects of windthrow on forests at different spatial scales: a review. For Ecol Manage 135:155–167CrossRefGoogle Scholar
  104. Vacik H, Lexer MJ (2001) Application of a spatial decision support system in managing the protection forests of Vienna for sustained yield of water resources. For Ecol Manage 143(1):65–76CrossRefGoogle Scholar
  105. Vázquez-Yanes C, Orozco-Segovia A, Rincón E, Sánchez-Coronado ME, Huante P, Toledo JR, Barradas VL (1990) Light beneath the litter in a tropical forest: effect on seed germination. Ecology 71:1952–1958CrossRefGoogle Scholar
  106. von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understory microclimate in a long-term experiment in Switzerland. Agric For Meteorol 166:144–155CrossRefGoogle Scholar
  107. Wohlgemuth T, Kull P, Wüthrich H (2002) Disturbance of microsites and early tree regeneration after windthrow in Swiss mountain forests due to the winter storm Vivian 1990. For Snow Landsc Res 77(1/2):17–47Google Scholar
  108. Wright EF, Coates KD, Bartemucci P (1998) Regeneration from seed of six tree species in the interior cedar-hemlock forests of British Columbia as affected by substrate and canopy gap position. Can J For Res 28(9):1352–1364CrossRefGoogle Scholar
  109. Young TP, Peffer E (2010) “Recalcitrant understory layers” revisited: arrested succession and the long life-spans of clonal mid-successional species. Can J For Res 40(6):1184–1188CrossRefGoogle Scholar
  110. ZAMG (2013) Climate data for Austria between 1961–1990. Central Institute for Meteorology and Geodynamics. Accessed 14 Dec 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gisela Pröll
    • 1
    Email author
  • Andras Darabant
    • 1
  • Georg Gratzer
    • 1
  • Klaus Katzensteiner
    • 1
  1. 1.Institute of Forest EcologyUniversity of Natural Resources and Life Sciences, ViennaViennaAustria

Personalised recommendations