Advertisement

European Journal of Forest Research

, Volume 133, Issue 6, pp 1109–1119 | Cite as

Main biotic drivers of tree growth in a developing Juniperus thurifera stand in central Spain

  • Natalia Vizcaíno-PalomarEmail author
  • Lorena Gómez-Aparicio
  • Javier Pavón-García
  • Carmen Bartolomé-Esteban
  • Julio Álvarez-Jiménez
  • Miguel A. Zavala
Original Paper
  • 224 Downloads

Abstract

Over the last few decades, abandonment of traditional management practices in Spain has led to widespread stand densification and has favoured the expansion of some forest species that previously exhibited more restricted ranges. Spanish juniper (Juniperus thurifera L.) woodlands are experiencing this phenomenon due to agricultural land abandonment and a decrease in the livestock pressure. Yet the main drivers underlying stand structure and dynamics at this novel scenario are poorly understood. In this study, we investigate the main biotic drivers of tree growth in a high-density stand of the dioecious J. thurifera at an early developmental stage (mean tree age of 32, ca. 50 years after land abandonment). Tree growth was measured by coring 299 individuals of different reproductive classes (male, female and non-reproductive). Neighbourhood models were used to assess the relative importance of tree size and neighbourhood competition on tree growth of each reproductive class in the study plot. We found that tree size had the strongest effect on tree growth, whereas the effect of intraspecific competition was negligible. We observed differences in growth patterns among reproductive classes along trunk diameter sizes. Thus, at smaller sizes, the three reproductive classes presented identical patterns of growth. However, at bigger sizes, females were the fastest growing individuals, followed by males and non-reproductive individuals. Overall, our results suggest that in young J. thurifera monospecific forests, where self-thinning processes may have not undergone yet, tree size and the reproductive class could play a relatively more important role than competition as drivers of tree growth. These findings constitute new information which contributes to understanding growth dynamics at early developmental stages in this dioecious species. Furthermore, our results provide guidelines for silvicultural managing, suggesting that at these young juniper stands thinning would likely not translate into enhanced growth on remnant trees.

Keywords

Dioecious Intraspecific competition Land-use abandonment Mediterranean forests Neighbourhood models Reproductive class Tree growth 

Notes

Acknowledgments

We thank the forest owners for kindly allowing us to work on their property. We also thank friends and relatives for their assistance in collecting field data, Noelia González-Muñoz and Paloma Ruiz-Benito for their comments to earlier versions of the manuscript, and Jesús Martínez-Fernández for drawing the map as well as a professional English editor. This work was supported by the Ministry of Economy and Competitiveness through grant [CGL2008-04503-C03-01/03] and REMEDINAL2 (CAM, S2009/AMB-1783). NVP was supported by fellowship FPI-MCI [BES-2009-025151].

Conflict of interest

None declared.

Supplementary material

10342_2014_826_MOESM1_ESM.doc (439 kb)
Supplementary material 1 (DOC 439 kb)

References

  1. Akaike H (1992) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson N (eds) Breakthroughs in statistics, vol 1. Springer, LondonGoogle Scholar
  2. Allen GA, Antons JA (1993) Sex ratio variation in the dioecious shrub Oemleria cerasiformis. Am Nat 141:537–553PubMedCrossRefGoogle Scholar
  3. Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr. doi:  10.1111/j.1466-8238.2010.00550.x
  4. Bazzaz F (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz F, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 1–37CrossRefGoogle Scholar
  5. Blanco E, Casado M, Costa M et al (2005) Los bosques ibéricos: Una interpretación geobotánica, 4a edn. Planeta, BarcelonaGoogle Scholar
  6. Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the Mediterranean basin: human and non-human determinants. Ecol Stud 109:43–119CrossRefGoogle Scholar
  7. Borel A, Polidori JL (1983) Le Genévrier thurifère (Juniperus thurifera L.) dans le Parc National du Mercantour (Alpes-Maritimes). Bulletin de la Société Botanique de France. Lett Bot 130(3):227–242Google Scholar
  8. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Canham CD, Uriarte M (2006) Analysis of neighborhood dynamics of forest ecosystems using likelihood methods and modeling. Ecol Appl 16:62–73PubMedCrossRefGoogle Scholar
  10. Canham CD, Lepage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34:778–787. doi: 10.1139/X03-232 CrossRefGoogle Scholar
  11. Chapin FS III, Bloom AJ, Field CB, Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37:49–57. doi: 10.2307/1310177 CrossRefGoogle Scholar
  12. Cipollini ML, Whigham DF (1994) Sexual dimorphism and cost of reproduction in the dioecious shrub Lindera benzoin (Lauraceae). Am J Bot 86:585–593Google Scholar
  13. Coates KD, Canham CD, LePage PT (2009) Above-versus below-ground competitive effects and responses of a guild of temperate tree species. J Ecol 97:118–130. doi: 10.1111/j.1365-2745.2008.01458.x CrossRefGoogle Scholar
  14. Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95:1084–1097. doi: 10.1111/j.1365-2745.2007.01280.x CrossRefGoogle Scholar
  15. Crespo A, Pinillos F, Lafuente E, Broto M, Alcalde F (2006) Aprovechamiento maderero de sabina en Castilla y León: Estudio de rendimientos en la fabricación de tarima de sabina. Actas del III Coloquio Internacional sobre sabinas y enebrales Tomo II: 395–403. Junta de Castilla y León, Soria, SpainGoogle Scholar
  16. Delph LF (1990) Sex-differential resource allocation patterns in the subdioecious shrub Hebe subalpina. Ecology 71:1342–1351CrossRefGoogle Scholar
  17. Delph LF (1999) Sexual dimorphism in flowering plants. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, BerlinGoogle Scholar
  18. DeSoto L, Olano JM, Rozas V, De la Cruz M (2010) Release of Juniperus thurifera woodlands from herbivore-mediated arrested succession in Spain. Appl Veg Sci 13:15–25. doi: 10.1111/j.1654-109X.2009.01045.x CrossRefGoogle Scholar
  19. Doust JL, Brien GO, Doust LL (1987) Effect of density on secondary sex ratio in Silene alba (Caryophyllaceae). Am J Bot 74:40–46CrossRefGoogle Scholar
  20. Edwards M (1992) Likelihood. Johns Hopkins. University Press, BaltimoreGoogle Scholar
  21. Freeman DC, Klikoff LG, Harper KT (1976) Differential resource utilization by the sexes of dioecious plants. Science 193:597–599PubMedCrossRefGoogle Scholar
  22. García-Morote FA, López-Serrano FR, Andrés M, Rubio E, González-Jiménez JL, de las Heras J (2012) Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of southern Spain. For Ecol Manag 270:85–93CrossRefGoogle Scholar
  23. Gauquelin T, Bertaudière V, Montès N, Badri W, Asmode JF (1999) Endangered stands of thuriferous juniper in the western Mediterranean basin: ecological status, conservation and management. Biodivers Conserv 8:1479–1498CrossRefGoogle Scholar
  24. Gauquelin T, Bertaudière-Montès V, Badri W, Montès N (2002) Sex ratio and sexual dimorphism in mountain dioecious thuriferous juniper (Juniperus thurifera L. Cupressaceae). Bot J Linn Soc 138:237–244CrossRefGoogle Scholar
  25. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582CrossRefGoogle Scholar
  26. Gimeno TE, Camarero JJ, Granda E et al (2012a) Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol 32:326–336. doi: 10.1093/treephys/tps011 PubMedCrossRefGoogle Scholar
  27. Gimeno TE, Escudero A, Delgado A, Valladares F (2012b) Previous land use alters the effect of climate change and facilitation on expanding woodlands of Spanish juniper. Ecosystems 15:564–579. doi: 10.1007/s10021-012-9529-z CrossRefGoogle Scholar
  28. Gimeno TE, Pías B, Martínez-Fernández J et al (2012c) The decreased competition in expanding versus mature juniper woodlands is counteracted by adverse climatic effects on growth. Eur J For Res 131:977–987. doi: 10.1007/s10342-011-0569-2 CrossRefGoogle Scholar
  29. Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of statistical functions with simulated annealing. J Econom 60:65–69CrossRefGoogle Scholar
  30. Gómez-Aparicio L, Canham CD (2008) Neighbourhood analyses of the allelopathic effects of the invasive tree Ailanthus altissima in temperate forests. J Ecol 96:447–458. doi: 10.1111/j.1365-2745.2007.01352.x CrossRefGoogle Scholar
  31. Gómez-Aparicio L, García-Valdés R, Ruiz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Chang Biol 17:2400–2414. doi: 10.1111/j.1365-2486.2011.02421.x CrossRefGoogle Scholar
  32. Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382PubMedCrossRefGoogle Scholar
  33. Hara T (1984) A stochastic model and the moment dynamics of the growth and size distribution in plant populations. J Theor Biol 109:173–190CrossRefGoogle Scholar
  34. Harper J (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  35. He F, Duncan R (2000) Density-dependent effects on tree survival in al old-growth Douglas fir forest. J Ecol 88:676–688CrossRefGoogle Scholar
  36. Herrera CM (1988) Plant size, spacing patterns, and host-plant selection in Osyris quadripartita, a dioecious hemiparasitic shrub. J Ecol 76:995–1006CrossRefGoogle Scholar
  37. Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Princeton University Press, PrincetonGoogle Scholar
  38. Houle G, Duchesne M (1999) The spatial pattern of a Juniperus communis var. depressa population on a continental dune in subarctic Québec, Canada. Can J For Res 29:446–450. doi: 10.1139/cjfr-29-4-446 CrossRefGoogle Scholar
  39. Kobe RK (1996) Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecol Monogr 66:181–201. doi: 10.2307/2963474 CrossRefGoogle Scholar
  40. Lathuillière L (1994) Le Genévrier thurifère: monographie et études des différentes stations des Alpes. Mémoire de la F.I.F., Nancy et Conservatoire Botanique Gap-CharanceGoogle Scholar
  41. Lee WK, Gadow KV, Chung DJ et al (2003) DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecol Mod 176:187–200CrossRefGoogle Scholar
  42. Lloyd D, Webb C (1977) Secondary sex characters in plants. Bot Rev 43:177–216CrossRefGoogle Scholar
  43. Lorimer CG (1983) A test of the accuracy of shade-tolerance classifications based on physiognomic and reproductive traits. Can J Bot Can Bot 61:1591–1598Google Scholar
  44. Matesanz S, Escudero A, Valladares F (2009) Impact of three global change drivers on a Mediterranean shrub. Ecology 90:2609–2621PubMedCrossRefGoogle Scholar
  45. Mencuccini M, Martínez-Vilalta J, Hamid HA et al (2007) Evidence for age- and size-mediated controls of tree growth from grafting studies. Tree Physiol 27:463–473PubMedCrossRefGoogle Scholar
  46. Montesinos D (2007) Resource availability and reproductive efficacy of the dioecious tree Juniperus thurifera. Dissertation thesis, Universitat de València, ValenciaGoogle Scholar
  47. Montesinos D, de Luís M, Verdú M et al (2006) When, how and how much: gender-specific resource-use strategies in the dioecious tree Juniperus thurifera. Ann Bot 98:885–889. doi: 10.1093/aob/mcl172 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Montesinos D, Villar-Salvador P, García-Fayos P, Verdú M (2012) Genders in Juniperus thurifera have different functional responses to variations in nutrient availability. New Phytol 193:705–712. doi: 10.1111/j.1469-8137.2011.03982.x PubMedCrossRefGoogle Scholar
  49. Muller-Landau HC, Condit RS, Chave J et al (2006) Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol Lett 9:575–588. doi: 10.1111/j.1461-0248.2006.00904.x PubMedCrossRefGoogle Scholar
  50. Murphy L (2012) Likelihood: Methods for maximum likelihood estimation. R package version 1.5. http://CRAN.R-project.org/package=likelihood
  51. Nyland RD (1996) Silviculture: concepts and application. McGraw-Hill series in forest resources. McGraw-Hill, New YorkGoogle Scholar
  52. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348CrossRefGoogle Scholar
  53. Olano JM, Rozas V, Bartolomé D, Sanz D (2008) Effects of changes in traditional management on height and radial growth patterns in a Juniperus thurifera L. woodland. For Ecol Manag 255:506–512. doi: 10.1016/j.foreco.2007.09.015 CrossRefGoogle Scholar
  54. Olano JM, Zavala MA, Rozas V (2011) Disruption of Juniperus thurifera woodland structure in its northwestern geographical range: potential drivers and limiting factors. Eur J For Res 131:563–570. doi: 10.1007/s10342-011-0531-3 CrossRefGoogle Scholar
  55. Ortiz PL (2002) Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Celak. (Cupressaceae) along an altitudinal gradient. Ann Bot 89:205–211. doi: 10.1093/aob/mcf028 PubMedCrossRefGoogle Scholar
  56. Pavón-García J (2005) Biología vegetativa y reproductiva en los primeros estadíos de crecimiento de Juniperus thurifera L. Dissertation thesis, Universidad de Alcalá de Henares, MadridGoogle Scholar
  57. Peterson CJ, Squiers ER (1995) Competition and succession in an aspen–white-pine forest. J Ecol 83:449–457CrossRefGoogle Scholar
  58. Poyatos R, Latron J, Llorens P (2003) Land use and land cover change after agricultural abandonment - the case of a Mediterranean mountain area (Catalan Pre-Pyrenees). Mt Res Dev 23:362–368CrossRefGoogle Scholar
  59. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical. Computing, Vienna, Austria. URL: http://www.R-project.org/
  60. Rozas V, Olano JM, DeSoto L, Bartolome D (2008) Large-scale structural variation and long-term growth dynamics of Juniperus thurifera trees in a managed woodland in Soria, central Spain. Ann For Sci. doi: 10.1051/forest Google Scholar
  61. Rozas V, DeSoto L, Olano JM (2009) Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytol 182:687–697. doi: 10.1111/j.1469-8137.2009.02770.x PubMedCrossRefGoogle Scholar
  62. Russo SE, Wiser SK, Coomes DA (2007) Growth-size scaling relationships of woody plant species differ from predictions of the metabolic ecology model. Ecol Lett 10:889–901. doi: 10.1111/j.1461-0248.2007.01079.x PubMedCrossRefGoogle Scholar
  63. Schulze, ED (1982) Plant life forms and their carbon, water, and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, New Series, vol 12B. Springer-Verlag, Berlin, pp 615–676Google Scholar
  64. Silander JA Jr, Pacala SW (1985) Neighborhood predictors of plant performance. Oecologia 66:256–263Google Scholar
  65. Silvertown J, Charlesworth D (2001) Introduction to plant population biology, 4th edn. Blackwell, LondonGoogle Scholar
  66. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  67. Stoll P, Newbery DM (2005) Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology 86:3048–3062CrossRefGoogle Scholar
  68. Stoll P, Weiner J, Schmid B (1994) Growth variation in a naturally established population of Pinus sylvestris. Ecology 75:660–670CrossRefGoogle Scholar
  69. Terrab A, Schönswetter P, Talavera S et al (2008) Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Mol Phylogenet Evol 48:94–102PubMedCrossRefGoogle Scholar
  70. Thirgood JV (1981) Man and the Mediterranean forest. A history of resource depletion, LondonGoogle Scholar
  71. Thompson J (2005) Plant evolution in the Mediterranean. Oxford University Press, OxfordCrossRefGoogle Scholar
  72. Tilman D (1982) Some thoughts on resource competition and diversity inplant-communities. Ecol Stud 43:322–336CrossRefGoogle Scholar
  73. Urbieta I, Zavala MA, Marañón T (2008) Human and non-human determinants of forest composition in southern Spain: evidence of shifts towards cork oak dominance due to last century management. J Biogeogr 35:1688–1700CrossRefGoogle Scholar
  74. Vasiliauskas SA, Aarssen LW (1992) Sex ratio and neighbor effects in monospecific stands of Juniperus virginiana. Ecology 73:622–632CrossRefGoogle Scholar
  75. Vayreda J, Martínez-Vilalta J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041. doi: 10.1111/j.1365-2486.2011.02606.x CrossRefGoogle Scholar
  76. Weiner J (1984) Neighbourhood interference amongst Pinus rigida individuals. J Ecol 72:183. doi: 10.2307/2260012 CrossRefGoogle Scholar
  77. Zavala MA, Angulo O, Bravo de la Parra R, López-Marcos JC (2007) An analytical model of stand dynamics as a function of tree growth, mortality and recruitment: the shade tolerance-stand structure hypothesis revisited. J Theor Biol 244:440–450. doi: 10.1016/j.jtbi.2006.08.024 PubMedCrossRefGoogle Scholar
  78. Zhang C, Zhao X, Gao L, Gadow KV (2009) Gender, neighboring competition and habitat effects on the stem growth in dioecious Fraxinus mandshurica trees in a northern temperate forest. Ann For Sci 66:812–812. doi: 10.1051/forest/2009068 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Natalia Vizcaíno-Palomar
    • 1
    • 2
    Email author
  • Lorena Gómez-Aparicio
    • 3
  • Javier Pavón-García
    • 2
  • Carmen Bartolomé-Esteban
    • 2
  • Julio Álvarez-Jiménez
    • 2
  • Miguel A. Zavala
    • 2
  1. 1.Department of Forest Ecology and GeneticsForest Research Centre (INIA)MadridSpain
  2. 2.Forest Ecology and Restoration Group, Department of Life Sciences, Science BuildingUniversity of AlcaláAlcalá de HenaresSpain
  3. 3.Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS)CSICSevillaSpain

Personalised recommendations